Archives for Ene,2022

You are browsing the site archives by date.

Resistencia a la insulina

La resistencia a la insulina (RI), resistencia insulínica o insulino-resistencia es un evento metabólico en el cual los receptores celulares de la insulina, principalmente aquellos ubicados en hepatocitos, miocitos y adipocitos, presentan una respuesta anormalmente disminuida frente a la acción estimulante de la hormona (1).

La RI está asociada con alteraciones fisiopatológicas como aquellas que se desarrollan durante la obesidad o como parte de la respuesta orgánica a injurias graves como sucede en los pacientes críticos (2). No obstante, la RI no es un evento que se presente única y exclusivamente en medio de un cuadro patológico. De hecho, la RI se puede presentar de manera natural durante el tercer trimestre del embarazo (3) o durante la pubertad (4). En cualquiera de estas circunstancias, la RI es un evento potencialmente reversible que puede complicarse irremediablemente si existe de por medio un cuadro de obesidad.

Aunque la definición de resistencia a la insulina parece ser sencilla, involucra decenas de cambios orgánicos cuyas consecuencias paulatinamente van influenciando a todo el organismo. Sin premisas bioquímicas claras es difícil entender tanto el origen de esta condición como el impacto que tienen nuestras decisiones nutricionales sobre la respuesta clínica de los pacientes.

 

¿Qué es el receptor de insulina?

El receptor de insulina es una proteína que está conformada, a su vez, por 4 subunidades proteicas: dos subunidades alfa que sobresalen fuera de la célula y dos subunidades beta que atraviesan la membrana celular de lado a lado [Nota. El receptor de insulina es particularmente abundante en hígado, tejido adiposo y muscular].

 

 

¿Cómo se produce la activación del receptor de insulina?

Las subunidades alfa inhiben el funcionamiento de las subunidades beta. Cuando las subunidades alfa entran en contacto con la insulina se inactivan. La inactivación de las subunidades alfa anula su efecto inhibitorio sobre las subunidades beta permitiendo que estas últimas se activen. La activación de las subunidades beta hace que éstas empiezan a captar grupos fosfato a nivel de los residuos de tirosina (este proceso se llama autofosforilación del receptor) (5). Este evento es clave para entender la resistencia a la insulina, en términos moleculares, porque todos los eventos posteriores a la activación del receptor se llevarán a cabo, únicamente si la fosforilación se produce a nivel de los residuos de tirosina; si la fosforilación se presenta a nivel de los residuos de serina y treonina no habrá actividad fisiológica posterior.

 

¿Qué sucede cuando el receptor de insulina es activado?

Si la activación del receptor de insulina se produce adecuadamente y a nivel del residuo de tirosina, éste empezará a captar unas proteínas citoplasmáticas que se denominan Sustrato del Receptor de Insulina 1 (IRS-1, por sus siglas en inglés para Insulin Receptor Sustrate) que a su vez pueden asociarse con diversos compuestos para desencadenar decenas de eventos metabólicos dentro de la célula, entre los que podemos citar:

 

  • Liberación de receptores GLUT4 desde vacuolas que se encuentran en el plasma hacia la membrana celular. Los receptores GLUT4 permiten el ingreso de la glucosa en las células y, la reducción consecuente de la glicemia.
  • Estímulo de la síntesis de glucógeno e inhibición de su degradación en hígado y músculo, con lo cual la glucosa es almacenada.
  • Estímulo para la glucólisis e inhibición de la gluconeogénesis.
  • Estímulo de la actividad de la Liproteina Lipasa (LPL) y triglicérido sintasa, con lo cual no solo se capta ácidos grasos hacia el interior de la célula, sino que además son almacenados como triglicéridos. Esto contribuye con su reducción en el torrente sanguíneo.
  • Inhibición de la lipasa hormona sensible con lo cual se detiene la lipólisis.


*****************************************
Para más información, click sobre la foto

*****************************

 

¿Cómo se produce la liberación de insulina?

La glucosa es el principal estimulante y responsable de la secreción de insulina, aunque los ácidos grasos, los aminoácidos, las incretinas (péptidos producidos en el intestino por efecto de la presencia de alimento) y otros compuestos también pueden actuar como secretagogos (6). Cuando la glicemia sube, la glucosa ingresa libremente a las células pancreáticas a través de los receptores GLUT2 [Nota. Debe haber una alta concentración de glucosa en plasma para que se produzca este ingreso]. En el interior, la glucosa es metabolizada y el ATP producido inhibe los canales de potasio sensible a ATP, produciéndose, en consecuencia, el ingreso de calcio a la célula. Este calcio desencadena varias reacciones consecutivas que culminan en la ruptura de la unión péptido C – insulina y la posterior liberación de insulina [Nota. La proinsulina, una proteína de 101 aminoácidos formada por péptido c e insulina es la forma bajo la cual se almacena la insulina en el citoplasma de la célula beta. Cuando el calcio sube la proinsulina se rompe en sus componentes: péptido c (50 aminoácidos) e insulina (51 aminoácidos). Hasta un 10% de la proinsulina se libera intacta].

 

¿Cómo se desarrolla y que sucede en la resistencia a la insulina?

Como ya se comentó líneas arriba, la resistencia a la insulina es un evento metabólico en el cual los receptores celulares de la insulina dejan de responder a la acción estimulante de la hormona. Pero ¿por qué los receptores dejan de responder? Se ha propuesto que, en personas con obesidad, el consumo excesivo de energía genera una acumulación anormalmente alta de ácidos grasos (AG) en el citoplasma de las células. En ese contexto, los AG interferirían con la fosforilación del receptor de insulina y, por ende, con todos los procesos de activación posteriores. Esta interferencia no permitiría la liberación de receptores GLUT4 por ende la glicemia se mantendría lo suficientemente alta como para estimular la liberación de mayor cantidad de insulina que forzará la “normalización” de la glicemia. Tampoco se producirá la activación de la lipoproteína lipasa con lo cual los ácidos grasos subirán en sangre o se afectará la síntesis de proteína muscular. Por otro lado, en los pacientes con inflamación la inactivación del receptor de insulina estaría mediada por la presencia de citoquinas pro-inflamatorias como el factor de necrosis tumoral (TNF).


Si quieres saber más sobre bioquímica aplicada a la nutrición, te invito a  revisar el temario de nuestro curso especializado haciendo click en  
Información del curso

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Freeman AM, Pennings N. Insulin Resistance. 2021 Jul 10. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 29939616
  2. Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. J Diabetes Res. 2019 Nov 19;2019:5320156. doi: 10.1155/2019/5320156. PMID: 31828161; PMCID: PMC6885766.
  3. Kelsey, M.M., Zeitler, P.S. Insulin Resistance of Puberty. Curr Diab Rep16, 64 (2016). https://doi.org/10.1007/s11892-016-0751-5
  4. Barazzoni R, Gortan Cappellari G, Ragni M, Nisoli E. Insulin resistance in obesity: an overview of fundamental alterations. Eat Weight Disord. 2018 Apr;23(2):149-157. doi: 10.1007/s40519-018-0481-6. Epub 2018 Feb 3. PMID: 29397563.
  5. Rivas AM, Nugent K. Hyperglycemia, Insulin, and Insulin Resistance in Sepsis. Am J Med Sci. 2021 Mar;361(3):297-302. doi: 10.1016/j.amjms.2020.11.007. Epub 2020 Nov 8. PMID: 33500122.
  6. Mendivil Anaya Carlos Olimpo, Sierra Ariza Iván Darío. ACCIÓN INSULÍNICA Y RESISTENCIA A LA INSULINA: ASPECTOS MOLECULARES. rev.fac.med.  [serial on the Internet]. 2005  Oct [cited  2015  Dec  02] ;  53( 4 ): 235-243. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-00112005000400005&lng=en.
  7. Leyva M, Rodríguez Y, Rodríguez R, Niño S. Mecanismos moleculares de la secreción de insulina.  Correo Científico Médico (CCM) 2020; 24(2)

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
,

Bioquímica nutricional de la clara de huevo de gallina

Las proteínas son el nutriente sobre el cual descansa la vida en nuestro organismo. Aunque es evidente que no se puede vivir solo de proteínas, estos nutrientes participan en prácticamente todos los procesos vitales de los seres humanos. Las proteínas dietarias son útiles para la formación de la masa proteica muscular (probablemente, su función más icónica); para la síntesis de otras proteínas como la albúmina o la hemoglobina; para la síntesis de hormonas proteicas como la insulina; para la formación de prácticamente la totalidad de las enzimas existentes; para la síntesis de receptores en las diferentes células del cuerpo; para la síntesis de decenas de citoquinas indispensables para la regulación del funcionamiento de un número proporcional de células; y para la formación de miles y  miles de otros compuestos cruciales en la existencia de los seres humanos [NOTA. Las enzimas son moléculas formadas solo por aminoácidos o por aminoácidos más otras partículas añadidas. Las enzimas se encargan de catalizar reacciones. Hasta hace 4 décadas se asumía que el 100% de las enzimas eran proteínas; sin embargo, hoy se sabe que un número muy pequeño de compuestos que se encuentran en el núcleo celular y se denominan ribosomas, se comportan como enzimas catalizando la unión de moléculas de ARN. Estos ribosomas no son proteínas pues no poseen aminoácidos en su estructura].

Ahora bien, aunque las proteínas dietarias se cuentan por decenas, no todas presentan la misma calidad nutricional. Ésta dependerá de su contenido de aminoácidos, de la proporción en la que éstos pueden alcanzar el torrente sanguíneo y por supuesto del impacto que puedan tener sobre la formación de las proteínas corporales previamente citadas. La clara de huevo es, en este contexto, una de las más importante que existen en la naturaleza. A continuación, algunos detalles de sus características bioquímico-nutricionales [Nota. El presente artículo solo aborda las características nutricionales de la clara de huevo de gallina].

 

Contenido proteico

La clara de huevo es un alimento que presenta una estructura tipo gel; es libre de lípidos, y está compuesto por un 88% de agua. Una clara promedio (35g) proporciona aproximadamente 3.5 g de proteína. Dos claras proporcionan tanta proteína como 240 cc de leche fresca o 240 cc de yogurt. Seis claras y media proporcionan tanta proteína como 100 g de carne.

En la clara se han identificado hasta al momento alrededor de unas 150 proteínas diferentes (1). Las más abundantes son: la ovoalbúmina que representa un poco más de la mitad del contenido proteico de la clara (54%), seguida de la ovotransferrina (12%), el ovomucoide (11%) y la lisozima (3.4%) (tabla 1) (2). Estas proteínas le otorgan a la clara características peculiares y han sido utilizadas como sustrato para llevar a cabo innovaciones tecnológicas importantes como el desarrollo de sustancias bactericidas o como vehículo para medicamentos. Nutricionalmente, todas pueden ser digeridas liberando su contenido rico en aminoácidos esenciales. La avidina representa menos del 1% del contenido proteico de la clara, sin embargo, afecta significativa y negativamente la absorción de la biotina. Esta vitamina conocida también como H o B7 es la coenzima principal de un grupo de carboxilasas que participan en diferentes procesos bioquímicos como por ejemplo la gluconeogénesis, el metabolismo de aminoácidos y la síntesis de ácidos grasos (3). Afortunadamente, la avidina es inactivada cuando la clara es sometida a cualquier tipo de proceso térmico.

 

Tabla 1. Composición porcentual de cada una de las proteínas de la clara de huevo

Tipo de proteina Porcentaje de contribución (%)
Ovoalbúmina

54

Ovotransferrina

12

Ovomucoide

11

Lisozima

3.4

Ovomucina

1.5

Ovoinhibidor

1.5

Cistatina

0.01

Ovostatina

0.5

Ovoglobulina G2

1.0

Ovoglobulina G3

1.0

Proteína ligadora de ribloflavina

1.0

Avidina

0.5

Fuente: Stevens L. Mini Review: Egg White Protein. Comp. Biochem. Physiol. Vol. 100B, No. 1, pp. 1-9, 1991 (2)

 

El aspecto menos favorable de la proteína de la clara está relacionado con la posibilidad de generar una respuesta alergénica. Los mayores alergenos en la clara son básicamente sus proteínas constituyentes: ovoalbúmina, lisozima, ovomucina y ovotransferrina. Felizmente, la prevalencia de alergia a la proteína de la clara es bastante baja (menos al 2%), afecta principalmente a niños menores de 5 años y se resuelve prácticamente en todos los casos al llegar a la edad escolar (1).

 

Digestibilidad

La digestibilidad proteica es una característica que redunda directamente sobre la utilización de la misma. En teoría, mientras más fácil es digerida una proteína, mayor será la proporción de aminoácidos que estarán disponibles para ser absorbidos y empleados en las funciones orgánicas. En este sentido, la clara de huevo es una de las proteínas alimentarias de más alta digestibilidad. La puntuación de aminoácidos corregida por la digestibilidad de las proteínas (PDCAAS, por sus siglas en inglés para Protein Digestibility-Corrected Amino Acid Score) es un método estándar ampliamente aceptado que mide cuánta es la cantidad de proteína que absorbemos a partir de una fuente alimentaria. Un PDCAAS mayor a 90% es considerado adecuado y propio de las proteínas de origen animal. La clara presenta un PDCAAS de 97% (el más alto de las proteínas alimentarias) comparado con el 94% de los lácteos o de las carnes en general (4). Ahora bien, cabe precisar que la clara de huevo no solo presenta un valor alto de PDCAAS, sino que también presenta los valores más altos en el índice de aminoácidos indispensables digestibles (DIAAS, por sus siglas en inglés para Digestible Indispensable Amino Acid Score) (5) [NOTA. En el año 2013, la Organización Mundial de la Salud (OMS) propuso el DIAAS como método de reemplazo para el PDCAAS. El DIAAS a diferencia del PDCAAS asume que la digestibilidad es mejor en el íleon, mientras que el PDCAAS en todo el intestino. En la actualidad, las tablas de DIAAS no están completas por lo que el PDCAAS sigue estando vigente. Se piensa que en unos 5 a 10 años (alrededor del 2030), el DIAAS será el único método de referencia en el mundo para valorar digestibilidad proteica].


*****************************************
Para más información, click sobre la foto

*****************************

Valor biológico

“El valor biológico de una proteína depende de la composición de aminoácidos y de las proporciones entre ellos y es máximo cuando estas proporciones son las necesarias para satisfacer las demandas de nitrógeno para el crecimiento, la síntesis, y reparación tisular” (4). La proteína de la clara, así como la proteína de los demás alimentos de origen animal, presenta un valor biológico superior al 90% (100% es el máximo valor que se puede obtener en este escore) lo que significa que cuenta con todos los aminoácidos esenciales en una cantidad suficiente como para cubrir el requerimiento diario de una persona.

Ahora bien, cuando hablamos de proteínas de origen animal con un alto valor biológico ideal es común que la mayoría de profesionales pueda asumir que estas proteínas solo están compuestas por aminoácidos esenciales; en la realidad no es así. Las proteínas de origen animal y algunas proteínas de origen vegetal que también presentan alto valor biológico (por ejemplo, la proteína del grano de soya) presentan un aporte variado de aminoácidos esenciales y como éstos son los que no producimos, son también sobre los cuales debemos poner mayor atención. En tal sentido, comentemos algunos datos interesantes. Cien gramos de clara de huevo, unas 3.5 unidades, proporcionan alrededor de 10 g de proteína de los cuales 4.931 g corresponden a aminoácidos esenciales, mientras que 100 cc de leche fresca que aportan 3.5 g de proteína de los cuales 1.556 g corresponden a aminoácidos esenciales, incluso una taza de leche de 240 cc solo proporciona 3.74 g de aminoácidos esenciales. [NOTA. Debe tenerse en cuenta que estas comparaciones se basan en el contenido proteico de alimentos. Estas proporciones podrían variar si se comparase proteína de clara aislada, caseína aislada o suero de leche aislado].

 

Tabla 2. Perfil de aminoácidos de la clara de huevo

Tipo de aminoácido Nombre g/100g de clara g/100 cc de leche entera
Esencial Treonina

0.453

0.154

Triptófano

0.176

0.043

Isoleucina

0.559

0.173

Leucina

0.936

0.333

Lisina

0.76

0,298

Metionina

0.396

0.09

Fenilalanina

0.658

0.161

Valina

0.73

0.207

Histidina

0.263

0.097

  Total

4.931

1.556

No esencial Alanina

0.607

0.11

Arginina

0.625

0.127

Ácido aspártico

1.159

0.279

Cisteína

0.288

0.038

Ácido glutámico

1.48

0.788

Glicina

0.391

0.069

Prolina

0.409

0.333

Serina

0.797

0.188

Tirosina

0.446

0.162

Fuente: U.S. Department of Agriculture Research Service. Food Data Central 2019. Fdc.nal.usda.gov SR Legacy Data (6)

 

La clara, también presenta una alta concentración de aminoácidos ramificados, sobresaliendo entre ellos la leucina. Los aminoácidos ramificados participan directamente del metabolismo muscular como sustratos en el ciclo de Krebs y en la gluconeogénesis. La evidencia disponible sugiere que la suplementación con aminoácidos ramificados en personas que se ejercitan y en deportistas genera un menor grado de dolor, menor daño muscular, menor percepción de esfuerzo y fatiga mental y en contraparte también genera una mayor potencia de la respuesta anabólica e inmune (7).

Diversos estudios han mostrado que entre 8-10g de aminoácidos esenciales y 1.8- 2.7 g de leucina en una dosis pueden ser suficientes para estimular la formación de proteína muscular e incluso reducir el catabolismo muscular. Estos valores han sido obtenidos a partir de estudios llevados a cabo empleando proteína de suero de leche. Esta proteína es utilizada como patrón de referencia para los estudios de ganancia de masa muscular y por lo general las características nutricionales de las demás proteínas dietarias son comparadas con aquellas de la proteína del suero de leche. De este modo, se ha llegado a la conclusión que 25 g de proteína de suero de leche proporcionan la cantidad necesaria de aminoácidos esenciales (8-10g) y de leucina (1.8-2.7g) para estimular la síntesis de proteína muscular (8-10). Nótese que 3.5 claras son capaces de proporcionar 4.931 g de aminoácidos esenciales y 0.936 g de leucina, el 50% del requerimiento sugerido.

Finalmente, la clara también presenta un contenido importante de arginina (0.625g por cada 100g de clara), aminoácido no esencial relacionado con la estimulación de la liberación de hormona de crecimiento, insulina y es sustrato para la formación de óxido nítrico, compuesto responsable de la dilatación arterial (11). El alto contenido de arginina de la clara de huevo podría explicar (aunque no se ha demostrado hasta el momento) su efecto sobre la ganancia de masa muscular, mismo que podría estar mediado por la estimulación de la liberación de hormona de crecimiento o insulina.


Si quieres saber más sobre este y otros temas, te invito a  revisar el temario de nuestro DIPLOMADO DE ESPECIALIZACIÓN PROFESIONAL EN NUTRICIÓN CLÍNICA haciendo click en  ¿Quiero saber más?

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Réhault-Godbert S, Guyot N, Nys Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684; doi:10.3390/nu11030684
  2. Stevens L. Mini Review: Egg White Protein. Biochem. Physiol. Vol. 100B, No. 1, pp. 1-9, 1991
  3. Saleem F, Soos MP. Biotin Deficiency. 2021 Sep 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 31613531.
  4. Suárez M, Kizlansky A, López L. Evaluación de la calidad de las proteínas en los alimentos calculando el escore de aminoácidos corregido por digestibilidad. Nutr Hosp. 2006;21(1):47-51
  5. Bagheri R, Hooshmand Moghadam B, Jo E, Tinsley GM, Stratton MT, Ashtary-Larky D, Eskandari M, Wong A. Comparison of whole egg v. egg white ingestion during 12 weeks of resistance training on skeletal muscle regulatory markers in resistance-trained men. Br J Nutr. 2020 Nov 28;124(10):1035-1043. doi: 10.1017/S0007114520002238. Epub 2020 Jun 24. PMID: 32576297.
  6. S. Department of Agriculture Research Service. Food Data Central 2019. Fdc.nal.usda.gov SR Legacy Data
  7. Gutierrez C, Lares M, Sandoval J, Hernández M. Aminoácidos de cadena ramificada: implicaciones en la salud. Revista Digital de Postgrado, 2020, 9(2), Mayo-Agosto, ISSN: 2244-761X. https://doi.org/10.37910/RDP.2020.9.2.e224
  8. Gorissen S, Crombag J, Senden J, Huub Waterval W, Bierau J, Verdijk L, Loon L. Protein content and amino acid composition of commercially available plant‑based protein isolates. Amino Acids (2018) 50:1685–1695. https://doi.org/10.1007/s00726-018-2640-5
  9. Gwin J, Church D, Wolfe R, Ferrando A, Pasiakos S. Muscle Protein Synthesis and Whole-Body Protein Turnover Responses to Ingesting Essential Amino Acids, Intact Protein, and Protein-Containing Mixed Meals with Considerations for Energy Déficit. Nutrients 2020, 12, 2457; doi:10.3390/nu12082457
  10. Hida A, Hasegawa Y, Mekata Y, Usuda M, Masuda Y, Kawano H, Kawano Y. Effects of Egg White Protein Supplementation on Muscle Strength and Serum Free Amino Acid Concentrations Nutrients 2012, 4, 1504-1517; doi:10.3390/nu4101504
  11. Koshinaka k, Honda A, Iizumi R, Miyazawa Y, Kawanaka K, Sato A. Egg White Protein Feeding Facilitates Skeletal Muscle Gain in Young Rats with/without Clenbuterol Treatment Nutrients 2021, 13, 2042. https://doi.org/10.3390/nu13062042

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More

El ciclo de Krebs en la práctica clínica

El ciclo de Krebs es la imagen icónica del metabolismo humano; más tarde o más temprano, tanto la glucosa, los ácidos grasos como los aminoácidos ingresan a este circuito para ser convertidos en energía o en compuestos intermediarios necesarios para decenas de reacciones posteriores y de importancia vital para el ser humano. El ciclo de Krebs es, también, la parada obligatoria en el proceso formativo de los nutricionistas/nutriólogos (dependiendo de la denominación del país) alrededor del mundo; todos nosotros en algún momento de nuestra formación académica debemos someternos a la tarea de entender, recordar y procesar la información desprendida de este complejo proceso integrado por sustrato, enzimas y reacciones. El objetivo de la presente nota es resaltar algunos hechos concretos que pueden hacer menos pesada esta tarea. En lo posible, trata de ver la imagen adjunta de modo paralelo a la explicación de cada párrafo.

La imagen circular con la que estudiamos el ciclo de Krebs es útil para explicar que las reacciones se dan de manera continua y cíclica, es decir, empiezan con la unión de acetil coa (2 carbonos) con el oxalacetato (4 carbonos) hasta formar citrato (6 carbonos) y terminan, después de varias reacciones, en oxalacetato para volver a iniciar el ciclo. Esto no significa que los compuestos posteriores (cis-aconitato, isocitrato, oxalsuccinato, cetoglutarato, succinil, succionato, fumarato, malato) se encuentren atados de modo inseparable, todo lo contrario, son producto y sustrato de reacciones diferentes que se dan de modo paralelo y en todo momento [Nota. La enzima responsable de la conversión del piruvato en acetil coa es dependiente de tiamina]. 

******************************

Para más información, click sobre la foto.

***************************

El ciclo de Krebs está formado por reacciones que se dan de manera independiente pero relacionadas entre sí: el producto de una reacción previa es fundamental para que se lleve a cabo la reacción posterior. Por ejemplo, el oxalacetato que se requiere para unirse al acetil coa se forma a partir de malato; sin embargo, en situaciones de ayuno la concentración de oxalacetato baja significativamente y de modo inversamente proporcional a la subida del acetil coa por lo que es necesario que el piruvato deje de ser convertido en acetil coa para ser convertido en oxalacetato; de ese modo se garantiza la continuidad del ciclo. En este mismo sentido y para citar otro ejemplo,  la formación de alfa cetoglutarato a partir de oxalsuccinato es importante para que el alfa cetoglutarato puede ser convertido en succinil coa; en condiciones de ayuno, la administración de aminoácidos como la glutamina tiene importancia clínica porque puede originar grandes cantidades de alfa cetoglutarato con el objetivo de sostener el ciclo y en un momento determinado contribuir a la formación de nueva glucosa en los órganos gluconeogénicos como el hígado o el riñón [Nota. La glutamina pierde nitrógeno y es convertida en glutamato; el glutamato pierde nitrógeno y es convertido en alfacetoglutarato que ingresa al ciclo]

La función básica del ciclo de Krebs no es producir ATP o GTP, el ciclo de Krebs se encarga de liberar grandes cantidades de electrones y protones que serán transportados hacia la cadena respiratoria a través del NAD (se forma a partir de niacina) o el FAD (se forma a partir de riboflavina). Cabe mencionar que el producto de desecho que se forma en Krebs es el CO2 y son los sacáridos los que mayor cantidad de CO2 liberan.

En la cadena respiratoria (un complejo de 4 megaproteinas ubicado en la membrana interna de la mitocondria) los electrones son transportados de una proteína a otra a través de enzimas denominadas citocromo (dependientes de hierro) hasta su destino final que es la formación de agua, no sin antes liberar cantidades variables de especies reactivas de oxígeno (ROS) o también llamados radicales libres [Nota. Mientras mayor sea la ingesta de energía de una persona, mayor será la necesidad de niacina y riboflavina, así como también, será mayor la producción de radicales libres]. Paralelamente, los protones fluyen a través del espacio intermembrana hasta activar a la enzima ATP sintetasa que tomará una molécula de ADP para formar ATP. 

Existen millones de argumentos que nos diferencian de los demás profesionales de la salud. En la nota, tan solo hemos querido puntualizar y resaltar el papel de 5 nutrientes básicos: tiamina, riboflavina, niacina, hierro y glutamina, sin embargo, todavía se podría decir millones de cosas más. El conocimiento con criterio y bien encaminado es la única forma en que esa diferenciación sea verdadera y perdure. 

 

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
Abrir chat
1
Bienvenidos a IIDENUT
¿En qué puedo ayudarte?
AFÍLIATE