Archives for 2022

You are browsing the site archives by date.

,

Tratamiento anticoagulante y consumo de fuentes alimentarias de vitamina K

El consumo de fuentes alimentarias de vitamina K durante la terapia anticoagulante es un tema controversial que a veces es difícil de afrontar por parte del nutriólogo/nutricionista/dietista-nutricionista (dependiendo de la denominación del país). Las guías son, en general, muy escuetas cuando se trata de abordar el tema y generan más dudas que certezas al respecto. El paciente experimenta cierta ansiedad por mensajes confusos, por decirlo menos, que recibe por parte del personal sanitario. A continuación, analizamos brevemente el tema.

¿Cómo se lleva a cabo el proceso de coagulación sanguínea?

La coagulación sanguínea es un proceso dinámico que involucra células y proteínas. Su objetivo es generar trombina, enzima responsable de la conversión del fibrinógeno en fibrina (proteína que participa en la formación de coágulos para detener el sangrado). Ahora bien, este proceso es en extremo complejo porque integra varios sistemas a la vez: el vascular (la célula dañada inicia la cascada de coagulación), el plaquetario (las plaquetas son activadas y movilizadas para adherirse al área dañada), el de coagulación (el proceso mismo) y el fibrinolítico (responsable de la degradación de fibrina cuando ya no es necesaria). Entre los años de 1960 y 1970 se propuso la Cascada de coagulación para explicar el proceso, no obstante, este modelo no era capaz de explicar por si solo todos los factores participantes. A principios de este siglo, se propuso el modelo celular (figura 1). Dada la amplitud del tema, solo abordaremos de modo superficial la descripción de qué son y qué hacen los factores de coagulación para entender el papel de la vitamina K en este contexto.

 

Figura 1. Cascada clásica de coagulación

 

Los factores de coagulación son cimógenos (enzimas inactivas) que deben ser activados (gracias a la pérdida de una o más uniones péptidicas) en un proceso secuencial. Algunos de estos factores fueron nombrados utilizando números romanos, sin embargo, no todos emplean esta nomenclatura. Los factores de coagulación se pueden agrupar en 5 categorías (1):

 

  • Factores de contacto. Se encuentran en la membrana de células dañadas y son responsables del inicio de la cascada de coagulación.

 

  • Factores dependientes de vitamina K. Son proteínas sintetizadas en el hígado que contienen un extremo rico en fragmentos de ácido gamma glutámico que son colocados allí por acción de la enzima glutamato-carboxilasa. Por esta razón, en situaciones de déficit de vitamina K o en los tratamientos anticoagulantes con antagonistas de la vitamina K estos factores no poseen estos residuos, por tanto, no son funcionales.

 

  • Cofactores. Son moléculas que aceleran la velocidad de reacción. Entre estos se encuentran los QAPM, los factores V, VIII, la proteína S, la trombomodulina y el factor tisular.

 

  • Cimógenos o sustratos. Son proteínas inactivas que en su mayoría se transforman en proteasas tipo serina. El factor XIII y el fibronógeno son excepciones porque sus formas activas FXIIIa y fibrina, respectivamente no cumplen funciones catalíticas (rompen otras moléculas) como la mayoría.

 

  • Inhibidores. La mayoría pertenecen a la superfamilia de serpinas o inhibidores de las proteasas de serina. Existen otros inhibidores no serpínicos, sin embargo cumplen roles similares, inhibir la coagulación.

 

Tabla 1. Factores de coagulación

Categoría Factor Función
Factores de contacto Factor XI En su forma activada es el activador del FIX
Factor XII Iniciador de la vía intrínseca
Precalicreína Precursor de la calicreína
Quiminógenos de alto peso molecular (QAPM) Cofactores en la activación de la precalicreina FXI y FXII
Factores dependientes de vitamina K Factor II (protrombina) Precursor inactivo de la trombina
Factor VII Junto al Factor Tisular inicia la vía extrínseca
Factor IX En su forma activa es la enzima del complejo tenasa intrínseco
Factor X En su forma activa es la enzima del complejo protrombinasa
Proteína C En su forma activa inactiva al FVa y FVIIIa
Proteína S Cofactor de la PCa
Proteína Z Incrementa la inhibición del FXa por el inhibidor de la Proteína Z
Cofactores Factor V Cofactor del complejo protrombinasa
Factor VIII Cofactor del complejo tenasa intrínseco
Trombomodulina Cofactor de la trombina
Factor tisular Inhibe la vía extrínseca al unirse al FVIIIa
Cimógenos o sustratos Fibrinógeno Precursor de fibrina
Factor XIII Transaminasa que entrecruza la fibrina
Inhibidores serpínicos Antitrombina III Serpina que inhibe a la trombina y a los factores VIIa, IXa, Xa, XIa y calicreína
Cofactor II de la heparina Serpina que inhibe a trombina
Inhibidor de la Proteína C Serpina que inhibe PCa, trombina, calicreína, FXIa, FXIIa y al componente C1
Inhibidor de la proteína Z Serpina que inhibe FXa y FXIa
Otros inhibidores no serpínicos TFPI o inhibidor de la vía del factor tisular Inhibidor tipo Kunitz de los complejos TF/FVIIa/FXa y del PS/FXa

Nota. La letra “a” después de una sigla en mayúscula, indica la forma activa.

Fuente: Referencia 1


*****************************************
Para más información, click sobre la foto

*****************************

¿Cuántos tipos de anticoagulantes están disponibles en la actualidad?

Tradicionalmente, el manejo de la anticoagulación podía darse de manera parenteral empleando heparina o de manera oral empleando Warfarina. Las dificultades asociadas con el manejo de este último medicamento, ha impulsado la investigación para el desarrollo de nuevos productos. En la tabla 2, se puede apreciar la lista de anticoagulantes disponibles en la actualidad. Nótese que la Warfarina y el acenocumarol son los únicos antagonistas de vitamina K en el mercado (2).

 

Tabla 2. Tipos de anticoagulantes comercialmente disponibles

Categoría Anticoagulante
Antagonistas de vitamina K Warfarina, acenocumarol
Heparinas (Inhibidor de FIXa, FXa, FXIa y FXIIa.) Heparina no fraccionada
Enoxaparina
Daltaparina
Tinzaparina
Inhibidor del Factor Xa Fondaparinux
Rivaroxaban
Apixaban
Inhibidor directo de la trombina Dabigatran
Bivalirudin
Argatroban
Fibrinolíticos Alteplase
Reteplase
Tenecteplase
Uroquinasa

Fuente:Referencia 2

 

¿Cuánta vitamina K necesitamos y dónde la encontramos?

La vitamina K puede ser encontrada en dos formas: filoquinonas (plantas y aceites vegetales) y menaquinonas (a nivel intestinal). La ingesta recomendada varía entre 90 y 120 ug/d (tabla 3)(3). Estos valores están influenciados por la edad, sexo, estado fisiológico, actividad física, crecimiento, lactación, gestación y estado de salud.

 

Tabla 3. Necesidades nutricionales de vitamina K según grupo etario

Grupo etario IA (mcg/d)
Menores de 6 meses 2.0
7-12 meses 2.5
1 a 3 años 30
4 a 8 años 55
9 a 13 años 60
14 a 18 años 75
Hombres adultos mayores de 19 años 120
Mujeres adultas mayores de 19 años 90
Adolescentes embarazadas o en periodo de lactancia 75
Mujeres embarazadas o en periodo de lactancia 90

Fuente: Referencia 3

 

Los vegetales de hoja verde oscura presentan los niveles más altos de vitamina K y pueden llegar a cubrir entre el 40-50% de las necesidades diarias. En la tabla 4, se recogen los valores por 100 g de alimento de los vegetales normalmente restringidos en pacientes con tratamiento anticoagulante. En el primer grupo se ubican los vegetales con alto contenido de vitamina K. Por ejemplo, 15 g de acelga cruda aportan 124.5 mcg de vitamina K. Esta cantidad es suficiente para cubrir las necesidades nutricionales de un adulto. Lo mismo sucedería con el perejil porque 5 g de perejil picado nos proporcionan aproximadamente 82 mcg de vitamina K y casi cubre toda la necesidad diaria. No obstante, para el caso del brócoli, la lechuga o repollo las cantidades consumidas del alimento deberían ser superiores a los 100 g para generar un consumo elevado de la vitamina.

,

Tabla 4. Fuentes alimentarias más importantes de vitamina K

Alimento USDA

(mcg/100g)

Acelga cruda 830
Acelga cocida 327.3
Berro crudo 250
Col rizada 817
Coliflor cocida 406
Espinaca cruda 482.9
Espinaca cocida 493.6
Mostaza cruda 257.5
Perejil 1640
Lechuga suave 102.3
Lechuga rizada 24.1
Lechuga americana 126.3
Brócoli crudo 101.6
Brócoli cocido 141.1
Cebollín 207
Repollo crudo 76
Repollo cocido 108.7
Arúgula cruda 108.6
Aceite de soja 183.9
Aceite de algodón 24.7
Aceite de canola 71.3
Aceite de girasol 5.4
Aceite de coco 0.5
Aceite de maíz 1.9
Aceite de oliva 60.2
Mantequilla con sal 7
Margarina 102
Palta 21

Fuente: Referencia 1

 

 ¿Qué impacto tiene el consumo de fuentes alimentarias de vitamina K sobre la terapia anticoagulante?

En principio es necesario precisar que el impacto del consumo de fuentes de vitamina K solo está relacionado con el uso de Warfarina. No existe información disponible relacionada con los otros medicamentos, de hecho, su mecanismo de acción no está relacionado con la vitamina K. Por otro lado, tampoco existe evidencia clara o contundente sobre la cantidad exacta de vitamina K que debe ser consumida por el paciente a partir de fuentes alimentarias. Las guías disponibles son muy genéricas en relación con el tema. Sin embargo, sí existe evidencia de que el consumo muy bajo o muy alto de vitamina K puede afectar negativamente el efecto de la Warfarina. Por esa razón, la recomendación más aceptada es que el paciente cubra sus necesidades nutricionales y evite hacer cambios bruscos en el consumo de fuentes alimentarias de vitamina K a lo largo del tiempo. La educación nutricional como parte de la consulta es fundamental en estos casos. El paciente debe aprender a identificar las fuentes alimentarias de vitamina K y entender que no es necesario efectuar restricción alguna, no obstante, evitar que durante un mismo día se consuma más de la cantidad requerida de vitamina K. Es importante, además, el control permanente de los parámetros de coagulación porque de esa manera también se puede titular la cantidad exacta de vegetales que puede ser consumida con seguridad por el paciente.

Finalmente, también debemos poner atención al impacto que pueden tener otros alimentos sobre la coagulación sanguínea o la actividad misma de la Warfarina. El consumo diario de ajo, por ejemplo, tiene un efecto anticoagulante plenamente demostrado, así como también el acido eicosapentanoico (EPA). El jugo de uva puede afectar la actividad del citrocromo P450 y afectar el metabolismo de la Warfarina. El exceso de vitamina E puede afectar la oxidación de vitamina K. La ginko biloba, el mosto de San Juan, el té negro y verde, el juego de cranberry y otros elementos más también puede afectar vía la formación de tromboxanos el sistema de anticoagulación, no obstante, de ellos hablaremos en otra entrega.

Si quieres saber más sobre nutrición pediátrica, sigue nuestro curso de Actualización en nutrición pediátrica. Haz click, AQUÍ,  para recibir más información. 

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Minighin Elaine C., Bragança Kellen P., Anastácio Lucilene R.. Warfarin drug interaction with vitamin K and other foodstuffs. chil. nutr.  [Internet]. 2020  Jun [citado  2022  Jun  23] ;  47( 3 ): 470-477. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-75182020000300470&lng=es.  http://dx.doi.org/10.4067/S0717-75182020000300470.
  2. Harter K, Levine M, Henderson SO. Anticoagulation drug therapy: a review. West J Emerg Med. 2015 Jan;16(1):11-7. doi: 10.5811/westjem.2014.12.22933. Epub 2015 Jan 12. PMID: 25671002; PMCID: PMC4307693.
  3. Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc . Washington D.C., National Academies Press (US); 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK222310/

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
,

Bebidas vegetales comercialmente disponibles ¿Qué tan nutritivas son?

Las bebidas vegetales comercialmente disponibles o mal llamadas “leches” son productos con apariencia similar a aquella de la leche de vaca, no obstante, elaboradas a partir de semillas, oleaginosas o cereales. Son consideradas “saludables” y su consumo se ha incrementado considerablemente en los últimos años. En prácticamente todos los países occidentales se ha podido percibir un incremento sostenido en la oferta de estas bebidas. Es tanta la penetración en el mercado y en la percepción positiva del consumidor que su uso dejó de ser un evento circunstancial, mediático o una simple moda. ¿Qué tan nutritivas son? Es una pregunta recurrente entre los pacientes y a juzgar por todo lo que se dice sobre ellas, es nuestra obligación tener una respuesta clara y concreta al respecto. Partiendo de las características bioquímico-nutricionales de la leche de vaca, analicemos en las siguientes líneas si su parecido con las bebidas vegetales va más allá del color.

 

La leche de vaca

Por definición, el único alimento que puede ser considerado como leche es aquel que se extrae de las glándulas mamarias de animales (1), por lo tanto, las llamadas “leche de arroz”, “leche de soya”, “leche de almendras” “leche de ajonjolí” y cualquier licuado parecido no debe ser considerado por motivo alguno leche (tabla 1).

 

Tabla 1. Términos lecheros oficiales según Codex Alimentarius

TERMINO LECHERO DEFINICIÓN
Leche Es la secreción mamaria normal de animales lecheros obtenida mediante uno o más ordeños sin ningún tipo de adición o extracción, destinada al consumo en forma de leche líquida o a elaboración ulterior.
Producto lácteo Es un producto obtenido mediante cualquier elaboración de la leche, que puede contener aditivos alimentarios y otros ingredientes funcionalmente necesarios para la elaboración.
Producto lácteo compuesto Es un producto en el cual la leche, productos lácteos o los constituyentes de la leche son una parte esencial en términos cuantitativos en el producto final tal como se consume, siempre y cuando los constituyentes no derivados de la leche no estén destinados a sustituir totalmente o en parte a cualquiera de los constituyentes de la leche.
Producto lácteo reconstituido Es el producto lácteo resultante de la adición de agua a la forma deshidratada o concentrada del producto en la cantidad necesaria para restablecer la proporción apropiada del agua respecto del extracto seco.
Producto lácteo recombinado Es el producto resultante de la combinación de materia grasa de la leche y del extracto seco magro de la leche en sus formas conservadas, con o sin la adición de agua para obtener la composición apropiada del producto lácteo.

Fuente: Referencia (1)

 

Desde el punto de vista nutricional, la leche de vaca de destaca por 05 elementos: i) su fracción proteica (incluida la proteina de la membrana del glóbulo de grasa o MFGM); ii) su fracción lipídica, iii) su contenido de lactosa; iv) su contenido de calcio; y v) los componentes bioactivos de la MFGM. Revisemos brevemente cada uno de ellos.

Proteína. La leche de vaca presenta un contenido de proteína que fluctúa entre los 3.5 – 4 g/100ml. El 78% de esas proteínas corresponden a las 4 fracciones de caseína: α, β, κ, γ; mientras que el 20% corresponde a la proteína del suero (rica en leucina). Alrededor del 2% restante corresponde a las proteínas de la membrana del glóbulo de grasa (MFGM) (2). Además, la digestión de la proteína de la leche de vaca a nivel intestinal origina diversos péptidos bioactivos con efectos inmunomoduladores, antimicrobianos, antitumorales y de protección del sistema cardiovascular entre los que podemos citar: α-casomorfina, casoquinina, casoxinas, caseinomacropéptidos, alfa y beta lactorfina, lactoferricina, lactoperoxidasas (3). La calidad nutricional de la proteína de la leche de vaca es alta. No solo presenta un aminograma perfecto (100%), sino que además su digestibilidad es casi completa (95% de un máximo de 100%) (4) (Tabla 2).

 

Tabla 2. Valor nutricional de según grupo alimentario.

Grupo alimentario Escore

%

PDCAAS

%

Primer aminoácido limitante
Lácteos 100 95 No tiene
Huevo 100 97 No tiene
Carnes (aves, res, pescado, mariscos, cerdos 100 94 No tiene

Fuente: Modificado de Referencia 4.

 

Lípidos. El contenido de lípidos de la leche de vaca fluctúa entre 3.5 – 4.5 g/100ml. La grasa de la leche bovina es considerada como una de las grasas de origen natural más complejas que existen porque se ha demostrado que contiene más de 400 diferentes tipos de ácidos grasos que, aunque en concentraciones menores al 0.1%, presentan propiedades fisiológicas interesantes. El 98% de los lípidos de la leche de vaca se encuentran bajo la forma de triglicéridos (glicerol más 3 ácidos grasos). El 2% restante está integrado por ácidos grasos libres saturados (AGS) e insaturados (AGI) con diferente longitud de cadena, colesterol, vitaminas liposolubles y lípidos estructurales (fosfatidilcolina, fosfatidiletanolamina, fosfatidilinositol, y fosfatidilserina y esfingomielina) (5). No existen pruebas que el consumo de leche de vaca incremente los niveles de colesterol, por el contrario, la presencia de factores protectores como el ácido linoleico conjugado (C18:2 cis-9 trans-11) son reconocidos por su efecto positivo sobre control del colesterol en sangre (2). El contenido promedio de colesterol de la leche de vaca es de aproximadamente 10-15 mg/dl.


*****************************************
Para más información, click sobre la foto

*****************************

Carbohidrato. La lactosa es el carbohidrato más importante de la leche de vaca. La leche extraída de la glándula mamaria de un mamífero es la única fuente natural de lactosa en la naturaleza. La lactosa es un disacárido, es decir, una azúcar formada por dos azúcares más pequeñas (la glucosa y la galactosa). La lactosa es particularmente importante porque el rol que cumple en la absorción del calcio dietario.  La lactosa también tiene un efecto positivo sobre la integridad del cerebro. Cuando la lactosa es digerida a nivel intestinal, la galactosa liberada es incorporada en la membrana celular de los cerebrósidos.

Aporte de calcio. El 99% del calcio de la leche de vaca se encuentra en su fracción no lipídica. El 65% se encuentra bajo la forma micelar (20% fosfato de calcio unido a caseína y 45% unido a fosfato). El 35% se encuentra en forma acuosa (25% unido a fosfato y 23% libre). De todas las formas de calcio, la fracción libre es la que presenta absorción más baja (figura 1). Aunque, la tasa final de absorción de calcio estará influenciada por el equilibrio existente entre los factores mejoradores de la absorción y los inhibidores. Se consideran factores mejoradores de la absorción de calcio a los péptidos, la acidez, la presencia de lactosa y la concentración de vitamina D. Por otro lado, se consideran factores inhibidores de la absorción de vitamina D a los: oxalatos, fitatos, ácidos urónicos, polifenoles, AGS de cadena larga y la presencia de grasa no absorbida a nivel intestinal (6,7).

 

Figura 1. Distribución y tasa de absorción del calcio de la leche

 

 

Bebidas vegetales comercialmente disponibles

Las bebidas vegetales son jugos con un alto contenido de agua preparados a base de leguminosas (por ejemplo: arverja o soja), semillas (por ejemplo: linaza o alpiste), oleaginosas (por ejemplo: almendras o avellanas) y cereales (por ejemplo: arroz) entre algunos de los grupos alimentarios más empleados. En el Perú, existe una variedad relativamente alta de estos productos con precios igualmente variables. Después de revisar la oferta disponible en supermercados y tiendas especializadas, hemos seleccionados los productos más frecuentemente encontrados. Cuando varias marcas con el mismo producto presentaban la misma composición nutricional y precio, solo se ha seleccionado una de las marcas. Veamos a continuación, cuál es su aporte nutricional.

Energía. El aporte de energía de las bebidas vegetales comercialmente disponibles fluctúa entre 20-50 kcal. El contenido de energía adicional dependerá principalmente de la presencia de azúcar añadida. En muy pocos casos, está en función de un aporte adicional de proteína.

Proteínas. El aporte de proteína es significativamente bajo en prácticamente todas las bebidas disponibles. Incluso en algunas marcas el aporte de proteína es cero gramos. En términos de calidad nutricional, las proteínas vegetales (exceptuando a la soja) presentan una aminograma incompleto (menor al 90% en todos los casos) y una digestibilidad un 30-50% menor que aquella que presentan las proteínas de origen animal. Es verdad que el procesamiento mejora la digestibilidad de la proteína, sin embargo, esta mejora aplica solo cuando se emplea aislado de proteína (esto involucra un proceso químico más complejo y no simplemente moler el grano) (tabla 3).

 

Tabla 3. Valor nutricional de según grupo alimentario.

Grupo alimentario Escore

%

PDCAAS

%

Primer aminoácido limitante
Cereales y derivados 68 58 Lisina
Frutas 75 64 Lisina
Verduras 88 73 Histidina
Menestras 95-100 < 80% Azufrados
Tubérculos 89 74 Histidina y azufrados

Fuente: Modificado de Referencia 4.

 

Lípidos. Contrario a lo que se podría pensar, incluso en el caso de las bebidas obtenidas a partir de oleaginosas como el coco o la almendra, el aporte de grasa es bajo. Difícilmente supera los 3g/100ml, siendo la tendencia que se encuentre por debajo de 2.0g/100ml. En vista de aporte reducido en grasa es poco lo que se puede comentar sobre su calidad. No obstante, vale la pena advertir que al leer la lista de ingredientes identificamos que la bebida de soya tenía aceite de soya como ingrediente.

 Carbohidratos. El aporte de carbohidratos está directamente influenciado por la presencia de azúcar añadida. Por lo general, el aporte es menor a 3.0g/dl y superior a este valor cuando el producto presenta azúcar adicional. Por ser un producto vegetal, no contiene lactosa.

 Calcio. El aporte promedio de calcio fluctúa entre 70-120 mg/100 ml. Por ser un producto vegetal, el calcio se presenta como una sal acuosa unida a ácido fosfórico, por tanto, el calcio de menor tasa de absorción.

  

Comparación entre las características bioquímico-nutricionales de la leche de vaca versus las bebidas vegetales comerciales

Después de revisar cuál es el aporte nutricional promedio tanto de la leche de vaca como de las bebidas vegetales analizadas, pasemos a compararlas (tabla 4).

Energía. El aporte de energía de la leche de vaca está alrededor de 65 kcal/100ml, lo cual es mayor al aporte de energía de la mayoría de las bebidas vegetales.

Proteína. El aporte de proteína de la leche de vaca es de 3.5 g/100 ml mientras que en el caso de las bebidas vegetales es prácticamente residual (salvo algunas excepciones). La proteína de la leche de vaca presenta un aminograma ideal, la proteína vegetal es incompleta. La proteína de la leche de vaca presenta una digestibilidad casi perfecta, sin embargo, la proteína vegetal es todo lo contrario. Además, considerando que la proteína es el nutriente más valioso en estos productos, decidimos calcular el costo de 1 g de proteína en cada uno de ellos. Encontramos que mientras que 1 g de proteína de alta calidad proveniente de la leche de vaca cuesta S/. 0.12 soles ($/. 0.10 dólares), un gramo de proteína de estas bebidas puede llegar a costar S/. 14.60 soles ($/. 3.89 dólares)

Lípidos. El aporte de lípidos de la leche de vaca está alrededor de 3.5g/100ml mientras que el aporte de las bebidas vegetales difícilmente supera los 2g/100ml. Aunque es verdad que la grasa vegetal es, por lo general, más saludable que la grasa animal, en los casos revisados no se puede defender o plantear un beneficio de salud en particular.

Carbohidratos. Mientras que la leche de vaca proporciona alrededor de 5g/100ml en base a lactosa (útil para la absorción del calcio), las bebidas vegetales presentan un contenido variado de carbohidratos que se incrementa cuando se le agrega azúcar.

Calcio. La leche de vaca aporta alrededor de 100 mg/100 ml de calcio, del tipo micelar con una tasa de absorción superior al 40%, las bebidas vegetales presentan una cantidad similar de  calcio, entre 70-120 mg/100ml, pero con una tasa de absorción significativamente baja.

 

Tabla 4. Comparación de las características nutricionales y costo de las bebidas vegetales comercialmente disponibles y la leche de vaca 

Marca Fuente de la proteína Aporte nutricional por 100 ml Costo por litro en soles/dólares* Costo por 1 g de proteína en soles/dólares
Energía (kcal) Prot (g) Lip (g) Cho (g) Calcio (mg)
Not Milk Arverja 46 1.6 3.3 1.8 129 16.90 (4.5) 1.05 (0.28)
Nature Heart Nuez de la india / Marañón Nuez de la india, marañón 26 0.0 2.0 2.0 SD 13.20 (3.52)*** 13.20 (3.52)
Nature Heart Almendra Almendra 22 1.0 2.0 1.0 SD 13.20 (3.52) 1.25 (0.33)
Nature Heart avena Avena 50 2.0 1.5 6.5** SD 13.20 (3.52) 0.62 (0.16)
Orasi Hazelnut Avellana 38 0.5 2.2 3.8 120 14.99 (3.97) 2.99 (0.79)
Orasí arroz Arroz 50 0.1 1.3 9.3 120 14.60 (3.89) 14.6 (3.89)
Bebida de coco Laive Coco 27 0.4 2.0 1.5 77 10.99 (2.9) 2.74 (0.73)
Bebida de soya de Laive Soya 31 2.0 1.0 3.0 97 6.70 (1.78) 0.34 (0.1)
Soy Vida de Gloria Soya 122 2.6 3.0 6.0** 87 3.88 (1.1) 0.14 (0.1)
Milkadamia Macadamia 25 0.4 1.5 2.9** 162 22.90 (6.10) 5.72 (1.52)
Leche de vaca Caseína/lactosuero 65 3.5 3.5 5 106 4.5 (1.2) 0.12 (0.1)

*Tipo de cambio: 3.75 soles por cada dólar. **Contiene azúcar añadido. ***Los envases de la marca Nature Heart son de 946 ml por lo que el costo ha sido prorrateado a 1 litro. SD: sin datos claros, solo consignaba un porcentaje.

 

En conclusión, las bebidas vegetales comercialmente disponibles son productos con un costo-beneficio nulo. Su proteína es cara y de mala calidad. No aportan una cantidad suficiente de grasa como para establecer un beneficio para la salud. Su carbohidrato es de absorción rápida (no hay fibra) y su impacto sobre la fisiología intestinal carece de valor agregado. Su aporte de calcio, aunque parecido a aquel de la leche, es de baja absorción. Alguien podría argumentar que pueden contribuir con el control del peso por ser bebidas con un aporte de energía bajo, sin embargo, dado el costo y su contenido de nutriente, igual sería beber agua.

A modo de nota de pie de página, debemos comentar lo siguiente. El presente análisis aplica también a las bebidas vegetales artesanales con algunas observaciones. Dado que el procesamiento casero es más rústico, la digestibilidad de la proteína vegetal en las bebidas artesanales es todavía más bajo que aquel de las bebidas comerciales. En relación con su aminonograma, el procesado casero no lo mejora. Respecto al aporte de energía, las bebidas artesanales presentan un aporte considerablemente mayor de calorías que aquel de las bebidas comerciales. Sin embargo, tomando en cuenta que su contenido de proteína es bajo y de mala calidad, este aporte alto de energía provendrá principalmente de grasa o carbohidratos y estos, a su vez, dependerán de la materia prima empleada.  De hecho, esto puede contribuir con la ganancia de peso, sin embargo, a base de la acumulación de grasa corporal.

Si quieres saber más sobre nutrición pediátrica, sigue nuestro curso de Actualización en nutrición pediátrica. Haz click, AQUÍ,  para recibir más información. 

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Norma General para el uso de términos lechero. CODEX STAN 206-1999.
  2. Norma Técnica Peruana. Leche y productos lácteos. Leche cruda. Requisitos. NTP 202.00. 2003
  3. García, C. Montiel, R. Borderas, T. Grasa y proteína de la leche de vaca: componentes, síntesis y modificación. Zootec. 63(R): 85-105. 2014.
  4. Baro L, Jimenez J, Martínez-Perez A, Bouza J. Péptidos y proteínas de la leche con propiedades funcionales. Ars Pharmaceutica, 42:3-4; 135-145, 2001
  5. Torrejón Claudia, Uauy Ricardo. Calidad de grasa, arterioesclerosis y enfermedad coronaria: efectos de los ácidos grasos saturados y ácidos grasos trans. Rev. méd. Chile  [Internet]. 2011  Jul [citado  2018  Oct  23] ;  139( 7 ): 924-931. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0034-98872011000700016&lng=es.  http://dx.doi.org/10.4067/S0034-98872011000700016.
  6. Rosado J. Intolerancia a la lactosa. Gac Med Mex. 2016;152 Suppl 1:67-73
  7. Fernández A, Sosa P, Setton D, et al. Calcio y nutrición [Internet].Buenos Aires: Sociedad Argentina de Pediatría; 2011 Jul [actualizado Jul 2011, citado 24 de octubre 2017 ]. Disponible en:http://www.sap.org.ar/docs/calcio.pdf

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More

¿Por qué no empleamos nutrición enteral o parenteral tan frecuentemente como se debería?

La respuesta es compleja porque involucra factores que se superponen de una manera tal que es complicado establecer un punto de partida o un hilo conductor. Sin pretender establecer un orden de importancia, consideramos que 4 factores son los resaltantes: el económico, el formativo, el legal y el dogmático, este último relacionado fuertemente con una cuota de empoderamiento. Dada la trascendencia de la nutrición artificial (enteral o parenteral) tanto en la recuperación de los enfermos como en el mantenimiento del estado nutricional de un individuo aparentemente sano (por obvias razones, aquí no aplica la nutrición parenteral), consideramos conveniente levantar la voz y reflexionar brevemente sobre esta materia.

 

El factor económico

Desde mediados de la década de 1980, cuando aparecieron los primeros estudios sobre desnutrición hospitalaria (de hecho, en 1981 se acuñó el término por primera vez (1)), el número de reportes e investigaciones que describen la prevalencia de esta condición se cuentan por decenas de mil. Uno de los estudios regionales más importantes llevado a cabo en Latinoamérica en los últimos 15 años, el ELAN, mostró en 2003 que un 50.2% de los pacientes atendidos en los hospitales de la región estaba desnutrido, situación que ha cambiado muy poco en este tiempo (2). Los reportes europeos, por otro lado, muestran tasas que fluctúan entre el 20-40% en hospitales, 20-45% en casas de reposo y 15-20% en enfermos atendidos en casa (3). Además, se ha demostrado plenamente, que la desnutrición está asociada con estancias hospitalarias más largas, aumento de las tasas de morbilidad y mortalidad, así como también con costos hospitalarios más altos (4). En España, por ejemplo, el estudio PREDyCES (5) concluyó en 2012 que el 23.7% de los pacientes sometidos a cribaje nutricional a través de la herramienta NRS-2002 presentaba desnutrición hospitalaria. En 2015, León et al (6) analizaron los costos de la desnutrición hospitalaria empleando la información recolectada en el estudio PREDyCES y encontraron que los pacientes que presentaban desnutrición tuvieron una estancia hospitalaria un 50% más alta a aquella mostrada por los pacientes sin desnutrición. Además, calcularon que los costos potenciales asociados con la desnutrición podrían ascender a 1.143 billones de euros por año (6). No obstante, a pesar de que es soberanamente evidente (no encontramos un adjetivo más contundente) que los pacientes requieren terapia artificial porque en un momento determinado la comida no es suficiente para reponer aquello que han perdido, la penetración en el uso de la nutrición artificial es todavía bastante bajo. Un argumento que se opone a su uso es el costo de los productos, no obstante, debe entenderse que mientras menos se empleen seguirán siendo costosos. La masificación (por supuesto, justificada) contribuirá a hacerlos menos onerosos [Nota. En el ELAN nisiquiera se llevo a cabo una evaluación nutricional real, solo se empleó una prueba de tamizaje (cribaje) y el NRS-2002 también es una prueba de tamizaje (cribaje)].

 

El factor formativo

Nadie, a estas alturas, debe dudar de que quién sabe de nutrición es el nutriólogo/nutricionista/dietista-nutricionista (dependiendo de la denominación del país); sin embargo, nuestra formación está fuertemente marcada por el paradigma alimentario-nutricional en donde todo gira en torno al alimento, por lo cual, sensibilizarnos con las formas artificiales de brindar nutrientes genera cierto desconcierto. Aunque finalmente, logramos superar la valla, se pierde un valioso tiempo y espacio durante el proceso de adaptación.

Además, muchos colegas se sienten intimidados por la posición del médico quién, para colmo, conoce poco o nada de nutrición. Para ejemplificar esta última idea, tomaremos como referencia una de las tantas investigaciones que abordan este tema: Physicians’ perceptions about managing enteral nutrition and the implementation of tools to assist in nutritional decision-making in a paediatric intensive care unit (7) [En español: Percepciones de los médicos sobre el manejo de la nutrición enteral y la implementación de herramientas para ayudar en la toma de decisiones nutricionales en una unidad de cuidados intensivos pediátricos].  En este trabajo se seleccionó médicos residentes y asistentes de la unidad de cuidados intensivos de un hospital suizo. Todos fueron sometidos a una entrevista de aproximadamente 25 minutos empleando un cuestionario pre-elaborado que indagaba sobre conocimientos, prácticas y actitudes. En la tabla 1, se pueden ver algunas de las respuestas más resaltadas por los propios investigadores. Saquen sus propias conclusiones y recuerden estas respuestas la próxima vez que duden de cuánto saben de nutrición.

 

Tabla 1. Algunas respuestas seleccionadas del estudio sobre las percepciones de los médicos sobre el manejo de la nutrición enteral

Respuesta textual en inglés Traducción al español
“I never know how many calories we are targeting according to age … it is often the supervisors who decide.” “Nunca sé cuántas calorías buscamos según la edad… a menudo son los supervisores (asistentes) quienes deciden”.
“I work in terms of volume … I don’t know how much that corresponds to in terms of kcal” “Yo trabajo en términos de volumen… No sé cuánto corresponde en términos de kcal”
“Finally, I don’t calculate every day, I’m going to follow the fluid balance rather than the nutritional balance.” “Finalmente, no calculo todos los días, voy siguiendo el balance de líquidos más que el balance nutricional”.
“After extubation, I know about the fluid requirements, but I don’t know about the calories.” “Después de la extubación, sé cuáles son los requisitos de líquidos, pero no sé cuáles son las calorías”.
“…we change the fluid requirements, but the caloric goals … I don’t think we are changing them.” “…cambiamos los requerimientos de líquidos, pero las metas calóricas… no creo que las estemos cambiando”.
“Once the patient is no longer seriously ill, the calculation must be performed differently. I think that is especially what we are not yet doing correctly.” “Una vez que el paciente ya no está gravemente enfermo, el cálculo debe hacerse de otra manera. Creo que eso es especialmente lo que todavía no estamos haciendo correctamente”.
“Sometimes we make more advanced calculations for the neonates, but it is true that again we don’t calculate systematically the nutritional needs.” “A veces hacemos cálculos más avanzados para los neonatos, pero es cierto que nuevamente no calculamos sistemáticamente las necesidades nutricionales”.

Referencia: Referencia 7


*****************************************
Para más información, click sobre la foto

*****************************

El factor legal-normativo

A pesar de las decenas de comunicaciones, documentos técnicos y guías de práctica clínica que existen actualmente en el mundo; a pesar de que estos documentos han sido emitidos por sociedades y asociaciones competentes en la materia; a pesar de que todos ellos resaltan la labor del profesional de nutrición como parte del equipo transdisciplinario de salud; y a pesar de que en todas estas comunicaciones se reconoce la pericia del profesional de nutrición, la realidad diaria dista mucho de la teoría académica.

En la actualidad no existe un entorno normativo universal y aceptado por todos los demás profesionales de la salud (especialmente, el médico) que nos otorgue la libertad necesaria para poder decidir, aunque parezca anecdótico, sobre temas relacionados con la nutrición enteral o parenteral de un paciente.

Es verdad que existen ejemplos sobresalientes de colegas que han destacado y destacan en este ámbito, lamentablemente, son los menos. Para la mayoría de los profesionales de la nutrición todavía existen fuertes barreras de acceso y aceptación de nuestro papel en el manejo de la terapia nutricional artificial.

En el colmo de los escenarios, algunas instituciones cuentan con protocolos de atención nutricional tan estrictos que el paciente debe presentar una cantidad bastante grande de signos y síntomas de desnutrición para que se permita una intervención nutricional artificial que, por lo general, suele llegar muy tarde complicando la recuperación e incluso la vida de la persona.

 

El factor dogmático con una cuota de empoderamiento

Probablemente, este es el factor más difícil de romper, porque podría haber dinero para contratación, podría haber dinero para comprar productos, podría haber dinero para que se mejora la formación, podría haber mejoras sustanciales en la normativa vigente, sin embargo, mientras exista la convicción de que el alimento es la solución para todas las situaciones probablemente esto nunca cambie.

Debe entenderse que el cambió de mirada también contribuirá con nuestro empoderamiento profesional porque ampliará nuestro horizonte de trabajo y hará que nuestra aproximación hacia el paciente se más holística y menos cerrada. Nuestro acercamiento hacia el manejo nutricional de un paciente debe ser más global y menos centrado solo en la dieta.

 

Uno podría pensar que el problema del uso intermitente de la nutrición artificial es de corte financiero, no obstante, a juzgar por la evidencia parece ser que no. Más bien es un problema de percepción. Si fuese solo un problema financiero, todas las áreas de nutrición clínica en los países de ingresos económicos medianos o altos contarían con la cantidad suficiente de profesionales de nutrición manejando estos temas, sin embargo, no es así. En este sentido, la parte formativa es fundamental para darnos las herramientas teóricas y prácticas que nos permitan sobresalir. Necesitamos ampliar nuestros pensamientos, sincerar nuestras ideas. Debemos analizar mejor los documentos y no solo leerlos y tratar de aplicarlos al pie de la letra. Recuerden que en Latinoamérica no existe suficiente investigación como para construir guías de práctica clínica, por lo cual, nos vemos obligados a adecuarlas, sin embargo, en esa adecuación no estamos considerando el aspecto racial o genómico que también influirá en la respuesta del paciente. En el Instituto IIDENUT venimos trabajando desde hace varios años para motivar un cambio: pasar al paradigma bioquímico-clínico-nutricional. En él, primero debes conocer la bioquímica del nutriente, para luego buscar las formas más adecuadas de administrarlo. Debes conocer la bioquímica del problema, para poder identificar más claramente sus manifestaciones. Debes entender la bioquímica de la necesidad, para poder establecer la mejor estrategia de tratamiento.

Para terminar, el soporte nutricional, como se llamaba en ese momento, llegó al Perú en 1981 (8) y desde allí hasta ahora, han pasado 41 años. De contar con menos de una docena de productos diferentes, hemos pasado a disponer de un catálogo que ya supera el medio centenar de productos entre fórmulas (enterales y parenterales) y módulos. ¿Cuántos de estos productos conoce? ¿Cuántos ha utilizado al menos una vez? ¿Sabe cuál es su estructura bioquímica? ¿Sabe que, en la mayoría de los casos, el nombre no representa la única condición en la que puede ser empleado? ¿Sabe si se pueden mezclar o no? ¿Sabe el impacto de su estructura en el metabolismo?

 

Si quieres saber más sobre nutrición artificial, sigue nuestro curso de Terapia Nutricional Artificial. Haz click, AQUÍ,  para recibir más información. 

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias bibliográficas

  1. Waitzberg D. L., Ravacci G. R., Raslan M.. Desnutrición hospitalaria. Nutr. Hosp.  [Internet]. 2011  Abr [citado  2022  Mayo  19] ;  26( 2 ): 254-264. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112011000200003&lng=es
  2. Correia MI, Campos AC; ELAN Cooperative Study. Prevalence of hospital malnutrition in Latin America: the multicenter ELAN study. Nutrition. 2003 Oct;19(10):823-5. doi: 10.1016/s0899-9007(03)00168-0. PMID: 14559314.
  3. Koroušić Seljak B, Mlakar Mastnak D, Mrevlje Ž, Veninšek G, Rotovnik Kozjek N. A multi-center survey on hospital malnutrition and cachexia in Slovenia. Eur J Clin Nutr. 2020 Mar;74(3):419-426. doi: 10.1038/s41430-019-0485-y. Epub 2019 Aug 6. PMID: 31388102; PMCID: PMC7062637.
  4. Chang M, Hoon J, Ryu S, Young J, Hoon J, Kyung J, Hoon J. et al. Prevalence of Malnutrition in Hospitalized Patients: a Multicenter Cross-sectional Study. J Korean Med Sci. 2018 Jan 8;33(2):e10 https://doi.org/10.3346/jkms.2018.33.e10 eISSN 1598-6357·pISSN 1011-8934
  5. Álvarez-Hernández J, Planas Vila M, León-Sanz M, García de Lorenzo A, Celaya-Pérez S, García-Lorda P, Araujo K, Sarto Guerri B; PREDyCES researchers. Prevalence and costs of malnutrition in hospitalized patients; the PREDyCES Study. Nutr Hosp. 2012 Jul-Aug;27(4):1049-59. doi: 10.3305/nh.2012.27.4.5986. PMID: 23165541.
  6. León-Sanz M, Brosa M, Planas M, García-de-Lorenzo A, Celaya-Pérez S, Hernández JÁ; Predyces Group Researchers. PREDyCES study: The cost of hospital malnutrition in Spain. Nutrition. 2015 Sep;31(9):1096-102. doi: 10.1016/j.nut.2015.03.009. Epub 2015 Apr 20. PMID: 26233866.
  7. Moullet C, Schmutz E, Laure Depeyre J, Perez MH, Cotting J, Jotterand Chaparro C. Physicians’ perceptions about managing enteral nutrition and the implementation of tools to assist in nutritional decision-making in a paediatric intensive care unit. Aust Crit Care. 2020 May;33(3):219-227. doi: 10.1016/j.aucc.2020.03.003. Epub 2020 May 12. PMID: 32414683.
  8. Guerrero-Muñoz L. Sobre el soporte nutricional en el Perú. Revista Cubana de Alimentación y Nutrición[Internet]. 2019 [citado 19 May 2022]; 29 (1): [aprox. -7 p.]. Disponible en: http://www.revalnutricion.sld.cu/index.php/rcan/article/view/690

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More

Pautas generales para la dosificación de suplementos de vitaminas y/o minerales

El uso clínico de micronutrientes (vitaminas y minerales) y compuestos bioquímicamente activos (sustancias como la lecitina, el licopeno o los flavonoides) en una matriz no alimentaria, es decir, empleando un preparado farmacéutico (jarabe, emulsiones, cápsulas, pastillas, polvos u otros), es una tarea relativamente nueva para el nutricionista/nutriólogo/dietista-nutricionsita (dependiendo de la denominación del país). Por mucho tiempo, nuestra formación académica ha priorizado el uso del alimento como vehículo principal y suficiente de tanto macro como micronutrientes. Tradicionalmente, el paradigma más importante en la formación del profesional en nutrición ha sido que la alimentación balanceada es capaz de cubrir, por si sola, todas las necesidades nutricionales de la persona. Este entorno no le proporciona al profesional las herramientas teóricas ni prácticas necesarias para aproximarse a la suplementación, por lo cual, el uso de suplementos de vitaminas, minerales u otros compuestos bioactivos es abordado solo tangencialmente. Aunque, hemos avanzado relativamente bien en el uso de fórmulas de nutrición enteral y parenteral, el camino global hacia el uso pleno de productos no naturales, es decir, más allá del alimento, todavía tiene un trecho largo y a la espera de ser recorrido. Revisemos a continuación, algunos aspectos puntuales que se deben tener en cuenta para utilizar suplementos de micronutrientes.

Bajo ciertas circunstancias, los alimentos no son capaces de proporcionarnos la cantidad de micronutrientes que necesitamos.

Meditemos un momento en lo siguiente. La vitamina C pertenece al grupo de vitaminas hidrosolubles. La vitamina C es indispensable para la formación de colágeno y L-carnitina; para la conversión de colesterol en sales biliares (de hecho, hay estudios que sugieren que el déficit de vitamina C puede contribuir con la formación de cálculos biliares); para la absorción del hierro no hem; para decenas de procesos esteroidogénicos a nivel adrenal; para la neutralización de especies reactivas de oxígeno (ROS), por ende, atenúa el daño en el ADN; y, por supuesto, para estimular y modular la respuesta inmunitaria (1, 2 ).

Se ha sugerido que la suplementación profiláctica de vitamina C en dosis de 1000 mg por día tiene un potente efecto antioxidante y fortalece el sistema inmune entre otras funciones. Se sabe por otro lado, que un consumo menor a 2000 mg por día de vitamina C es considerado seguro (3), por lo cual, los suplementos disponibles en el mercado con estas dosis pertenecen a la categoría de “venta libre” es decir, no requieren prescripción médica. En este orden de ideas, si tuviéramos un paciente a quien buscamos suplementar con 1000 mg diarios de vitamina C de manera profiláctica, ¿cuánto zumo de naranja (una de las principales fuentes alimentarias) se requeriría para cubrir esta cantidad, tomando en cuenta que un vaso de zumo de naranja proporciona 48 mg de vitamina C por cada 100 ml (4)? Respuesta. La persona debería consumir diariamente, al menos, 2 litros de zumo de naranja. Esta cantidad es evidentemente excesiva. La única forma posible de proveer al paciente de 1000 mg de vitamina C diariamente sin alterar otros elementos de su dieta sería empleando un suplemento.


*****************************************
Para más información, click sobre la foto

*****************************

 

2. Aportar una mayor cantidad de un micronutriente a través de un suplemento o alimento, no significa que se absorberá en mayor medida.

 

La regulación de la absorción de micronutrientes es un proceso regulado desde el interior del organismo en función del número de receptores presentes en la luz intestinal. Citemos un ejemplo. La deficiencia de hierro estimula la aparición proporcional de receptores de hierro (apoferritina) con el objetivo de captar la mayor cantidad posible del mineral, disponible en la luz del intestino. Cuando las reservas de hierro son normales o altas, el número de estos receptores desciende abruptamente con lo cual la absorción se reduce en una cantidad proporcional (5). Este evento que tiene como objetivo proteger al organismo contra el ingreso desmedido del mineral (cantidades elevadas de hierro libre pueden inducir un estado pro-oxidante), además, puede afectar negativamente la absorción de otros minerales debido a interacciones entre micronutrientes por puntos de absorción común.

3. La cantidad liberada del micronutriente depende del excipiente empleado.

Excipiente es la sustancia que sirve como transportador del micronutriente hasta el lugar donde será absorbido; en realidad, el excipiente tiene otras funciones, pero desde el punto de vista nutricional, es la que más nos importa. Dependiendo del excipiente, un suplemento puede liberar más o menos cantidad de micronutriente, por ejemplo, 1 cucharadita de sulfato ferroso nos puede proporcionar 625 mg de sulfato ferroso pero solo libera 125 mg de hierro elemental; en cambio, una cucharadita de hierro maltosado podría llegar a liberar hasta 250 mg de hierro elemental (tabla 1). En este caso hemos comparado dos excipientes diferentes, por un lado el sulfato y por otro la maltosa. Esta información está disponible en los insertos.

 

Tabla 1.

Cantidad de micronutriente liberada a partir de formulaciones con dos excipientes diferentes

Tipo de

fórmula

Dosis Cantidad por dosis Cantidad proporcionada por dosis Cantidad de micronutriente  liberado en cada dosis
Sulfato

ferroso

1 cucharadita 5 ml 625 mg de Sulfato ferroso 125 mg de Hierro elemental
Hierro

maltosado

1 cucharadita 5 ml 862 mg de Hierro maltosado 250 mg de Hierro elemental

Fuente: Inserto

 

 4. La cantidad disponible de un micronutriente también depende de la forma farmacéutica empleada.

Los jarabes y las pastillas pueden liberar cantidades diferentes de un micronutriente determinado. No solo ello, la presentación farmacéutica también nos proporcionan ciertas facilidades al momento de la administración del micronutriente, sobre todo, facilidades relacionadas con el fraccionamiento de la dosis (tabla 2).

 

Tabla 2.

Cantidad de micronutriente liberada a partir de dos formas farmacéuticas diferentes

Tipo de

fórmula

Presentación farmacéutica Dosis Cantidad proporcionada por dosis Cantidad de micronutriente  liberado en cada dosis
Sulfato

ferroso

Jarabe 1 cucharadita 625 mg de Sulfato ferroso 125 mg de Hierro elemental
Sulfato

ferroso

Pastilla 1 pastilla 862 mg de sulfato ferroso 60 mg de hierro elemental

Fuente: Inserto

 

5. Los niveles de ingesta máxima tolerable (UL) para vitaminas y minerales esenciales determinan la cantidad segura de estos nutrientes para ser consumida vía alimento o suplemento.

 Los UL son los valores de ingesta máxima tolerable tanto para vitaminas como para minerales y se encuentran consignados en el documento Dietary Reference Intakes (DRI). Estos valores no representan en caso alguno una dosis de tratamiento médico y consideran como seguro cualquier consumo vía alimento o suplemento que sea menor a lo establecido en estas tablas. Como se mencionó líneas arriba, este es el fundamento por el cual muchos suplementos de micronutrientes se encuentran en la categoría de “venta libre” y pueden ser prescritos con libertad.

 

Tabla 3.

Valores de UL para algunos micronutrientes

Nutriente UL
(por día)
Vitamina A (preformada) 3,000 mcg
Vitamina C 2,000 mg
Folato 1,000 mcg
Calcio 2.5 g
Hierro 45 mg
Zinc 40 mg

Fuente: DRI

 

6. Se debe estar atento a la presencia de excipientes que pudiesen generar reacciones secundarias adversas.

Muchas de las formulaciones disponibles en el mercado pueden contener gluten, lactosa o sulfas. El gluten está contraindicado en la celiaquía, la lactosa en la intolerancia a la lactosa y las sulfas en personas alérgicas. Parte del cuidado que se debe tener al administrar micronutrientes vía suplemento, es también, evaluar los componentes de la presentación farmacéutica empleada.

 

Finalmente, debemos reiterar que este artículo no pretende desmerecer el papel de los alimentos, ni mucho menos. Este artículo tiene como objetivo llamar la atención de los nutricionistas/nutriólogos/dietista-nutricionistas hacia el uso de suplementos de vitaminas y minerales de manera complementaria y sistemática cuando exista evidencia suficiente que la dieta no llega a cubrir las necesidades de micronutrientes de una persona. Este artículo tiene como objetivo promover el uso de suplementos de vitaminas y minerales con fines profilácticos y a dosis seguras. Recuerde, estimado colega y lector, que la labor del Profesional de la Nutrición no solo incluye el tratamiento de una enfermedad establecida, sino principalmente la prevención de aquellas que pudiesen aparecer por efectos de una deficiencia o un mal control nutricional.

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Jafari D, Esmaeilzadeh A, Mohammadi-Kordkhayli M, Rezaei N. Vitamin C and the Immune System. En Mahmoudi M, Rezaei N (eds.), Nutrition and Immunity. © Springer Nature Switzerland AG 2019. https://doi.org/10.1007/978-3-030-16073-9_1
  2. Del Pozo Reginald, Muñoz Mirna, Dumas Andrés, Tapia Claudio, Muñoz Katia, Fuentes Felipe et al . Efecto de la ingesta de vitamina C en el proceso de formación de cálculos biliares de colesterol. Rev. méd. Chile  [Internet]. 2014  Ene [citado  2016  Mar  09];  142(1): 20-26. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872014000100004&lng=es.  http://dx.doi.org/10.4067/S0034-98872014000100004 .
  3. Dietary Referente Intakes (DRI) for Energy, Carbohydrate, Fiber, Fat, Fatty acids, Cholesterol, Protein, and Aminoacids. Food And Nutrition Board. Institute of Medicine of the National Academies. 2005
  4. Instituto Nacional de Salud (Perú). Tablas peruanas de composición de alimentos / Elaborado por María Reyes García; Iván Gómez-Sánchez Prieto; Cecilia Espinoza Barrientos; Fernando Bravo Rebatta y Lizette Ganoza Morón. – 8.ª ed. — Lima: Ministerio de Salud, Instituto Nacional de Salud, 2009. 64 p.
  5. Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, Tissot JD. Physiology of iron metabolism. Transfus Med Hemother. 2014 Jun;41(3):213-21. doi: 10.1159/000362888. Epub 2014 May 12. PMID: 25053935; PMCID: PMC4086762.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More

Alergia a la proteína de la leche de vaca

La proteína de la leche de vaca es la primera proteína a la que están expuestos los niños, sin importar si reciben lactancia materna exclusiva, sucedáneos de la leche materna o alimentación complementaria. La alergia a la proteína de la leche de vaca es una de las más comunes en la infancia, aunque en la mayoría de los casos remite por completo alrededor de los 5 años de edad. Revisemos, brevemente, algunos datos sobre su prevalencia, cuadro clínico y manejo nutricional.

 

1. Prevalencia

La alergia a la proteína de la leche de vaca (APLV) es una de las más frecuentes en lactantes y niños pequeños. La APLV afecta a aproximadamente el 2.5% de la población de este grupo etario (1); sin embargo, en el 60% de los casos, la APLV se ha resultado por completo cuando el niño alcanza la edad escolar (2). Por otro lado, un estudio publicado en 2019 indicó que al menos 1.9% de los adultos en Estados Unidos de Norteamérica presentaba APLV cuyo origen, al menos en el 77% de los casos, se remontaba a la infancia. Hasta el momento (3) no existe evidencia clara que sugiera algún mecanismo de prevención.

 

2. Etiología

La APLV se origina debido a una reacción inmunológica de hipersensibilidad a una o más de las fracciones proteínicas de la leche de vaca. La APLV se diferencia de la intolerancia a la lactosa porque en esta última no se encuentra comprometido el sistema inmunológico; mientras que en la primera si (4).  Debe quedar absolutamente claro que la respuesta alergénica se presenta frente a proteínas o péptidos  de más de 1500 dáltons; no existe respuesta alergénica frente a aminoácidos libres.

Existen tres tipos de presentación de APLV (tabla 1): a) la mediada por la inmunoglobulina E (IgE); b) no mediada por IgE; y c) reacción que puede estar mediada o no por IgE (mecanismo mixto).

 

Tabla 1. Tipos de presentación de APLV

Tipos de presentación Descripción
Mediada por IgE Detección de IgE en prueba cutánea y/o suero
No mediada por IgE No se detecta IgE específica
Reacciones que pueden estar o no mediadas por IgE Mecanismo mixto

Referencia 5

 

La APLV mediada por IgE es una reacción alérgica tipo I y de hipersensibilidad inmediata (se presenta en menos de 1 hora), mientras que la APLV no mediada por IgE comprende 3 tipos de reacciones inmunológicas: aquellas de tipo II (citotóxicas), aquellas de tipo III (complejos inmunitarios antígenos – anticuerpo – complemento) y aquellas de tipo IV (mediadas por células T) y por tanto es de carácter tardío (horas o días) (4).


*****************************************
Para más información, click sobre la foto

*****************************

 

3. Cuadro clínico

En las reacciones mediadas por IgE, la intensidad de las reacciones varía desde aquellas leves hasta aquellas que pueden comprometer la vida del niño como la anafilaxia. Las reacciones no mediadas por IgE se presentan tardíamente, pero de igual manera son de difícil manejo. Entre el 75-92% de los niños presenta más de un síntoma (tabla 2)

 

Tabla 2. Tipos de reacciones orgánicas en la APLV

Tipo de reacciones  Mediadas por IgE No mediadas por IgE
Reacciones sistémicas Anafilaxia
Reacciones gastrointestinales En el 30% de los casos se pueden presentar vómitos y diarrea Reflujo gastroesofágico, espasmo cricofaringeo, esofagitis eosinofílica, gastroenteritis y proctocolitis, enterocolitis inducida por proteína de la leche de vaca, irritabilidad de colon severa,
Reacciones respiratorias Anafilaxia y ataques asmáticos Sindrome de Heiner
Reacciones dermatológicas Inmediatas: urticaria aguda angioedema.

Tardías: dermatitis atópicas

Dermatitis atópica

Fuente: Modificado de referencia 5

 

Los sistemas más frecuentemente involucrados son en las reacciones alérgicas son: gastrointestinal (50-60%), dermatológico (50-60%) y respiratorio (20-30%). El compromiso de 2 o más sistemas aumenta la probabilidad de APLV (6).

 

 4. Proteína de la leche y alergia

La leche entera de vaca (LEV) presenta un contenido de proteína que fluctúa entre los 3.5 – 4 g/100ml, algo que la diferencia significativamente del contenido proteico de la leche humana, que apenas alcanza 1 g/100ml, lo cual no es negativo debido a las particularidades bioquímicas y nutricionales de la proteína de la leche humana.  La LEV contiene más de una docena de fracciones proteicas diferentes, cada una de ellas con características físico químicas particulares.

  • Las caseínas.

Constituyen el 78% de las proteínas de la leche de vaca. Las caseínas se encuentran formando una estructura sólida y esponjosa de gran tamaño molecular. Las caseínas se clasifican en función de su movilidad electroforética y son responsables de la respuesta de la leche frente a diversos procesos industriales relacionados con la obtención de derivados lácteos, como el queso. En función de sus características físicas, las caseínas se pueden agrupar en 4 categorías: α, β, κ, γ (Tabla 3 y 4) (7). De entre todas las fracciones caseínicas, las alfas son aquellas con el mayor poder alergénico.

  • Las proteínas del suero.

Representan el 20% del total de proteínas de la leche de vaca. Son casi 10 fracciones diferentes. Aunque todas las fracciones de la proteína de la leche de vaca tienen un potencial alergénico extremadamente alto, la betalactoglobulina (BLG) presente en el lactosuero es la que se encuentra asociada a la mayor cantidad de reacciones de sensibilización inicial. La BLG es una proteína que no existe en el ser humano, sin embargo, puede aparecer en la leche humana a partir del consumo de lácteos por parte de la madre (1).

  • Las proteínas de la membrana del glóbulo de grasa (MFGM).

Se encuentran rodeando las gotas de grasa haciéndolas solubles en el medio acuoso de la leche (tabla 3).

  

Tabla 3. Tipos de proteínas presentes en la leche de vaca

ABREVIATURA G/L %
Caseínas 28.0 78.0
αs1-Caseína αs1-CN 12,4 34.7
αs2-Caseína αs2-CN 3.0 8.3
β-Caseína β-CN 7.0 19.0
κ-Caseína κ-CN 4.2 12
γ-Caseína γ-CN 1.4 4
Proteínas del lactosuero 7.2 20.0
β-lactoglobulina β-LG 4.2 11.7
α-lactoalbúmina α-LA 1.1 3.0
Fracción proteosa-peptona PP 0.8 2.2
Inmunoglobulina G IgG 0.6 1.7
Inmunoglobulina M IgM 0.09 0.25
Inmunoglobulina A IgA 0.01 0.027
Albúmina de suero AS 0.3 0.83
Lactoferrina LF 0.1 0.27
Proteínas MFGM 0.7 2.0

Fuente: Referencia 7

 

Tabla 4. Tipos de proteínas presentes en la leche de vaca

ABREVIATURA G/L % Alergenicidad
Caseínas 28.0 78.0  
αs1-Caseína αs1-CN 12,4 34.7 Alta
αs2-Caseína αs2-CN 3.0 8.3 Alta
β-Caseína β-CN 7.0 19.0 Baja
κ-Caseína κ-CN 4.2 12 Baja
γ-Caseína γ-CN 1.4 4 No se ha descrito
Proteínas del lactosuero 7.2 20.0  
β-lactoglobulina β-LG 4.2 11.7 Alta
α-lactoalbúmina α-LA 1.1 3.0 Alta
Fracción proteosa-peptona PP 0.8 2.2 No se ha descrito
Inmunoglobulina G IgG 0.6 1.7 Baja
Inmunoglobulina M IgM 0.09 0.25 Baja
Inmunoglobulina A IgA 0.01 0.027 Baja
Albúmina de suero AS 0.3 0.83 Baja
Lactoferrina LF 0.1 0.27 No se ha descrito
Proteínas MFGM 0.7 2.0 No se ha descrito

Fuente: Modificado de referencia 5 y 7

 

5. Manejo nutricional

  • Si se sospecha de APLV leve o moderada, se recomienda mantener la lactancia materna y eliminar los productos que contengan proteína de LEV de la dieta de la madre por 4 semanas (dieta de eliminación) (8-10). En el caso de destete parcial o total, utilizar siempre una fórmula láctea extensamente hidrolizada (5, 8-10).
  • La madre debe recibir dieta de eliminación prolongada, pasar por consulta nutricional y recibir suplemento de calcio adicional de 1g al día por 4 semanas. La suplementación de calcio es especialmente importante en casos de dermatitis atópica o colitis alérgica con deposiciones líquidas con moco y/o sangre (5, 8-10).
  • La eliminación de la proteína de la LEV de la alimentación del niño mayor será absoluta hasta que el paciente desarrolle tolerancia a la misma (8-10).
  • Se debe prestar atención a la dieta de la madre o del niño (aquellos con alimentación complementaria) cuando se haya aplicado una restricción absoluta de proteína de leche de vaca porque se podrían presentar déficits nutricionales (8).
  • Valorar después de 2 a 4 semanas si la dieta exenta de proteína de LEV de la madre generó mejoras significativas en la respuesta clínica del lactante. Si después de 4 semanas no existe respuesta clínica positiva, se debe suspender el seno y utilizar una fórmula extensamente hidrolizada (8, 10).
  • Aquellos niños con APLV que no toleren fórmulas extensamente hidrolizadas, que cursen con alergias a múltiples proteínas y que no reciban lactancia materna, deberán recibir fórmula de aminoácidos hasta lograr tolerancia (8).
  • Recientemente se ha evaluado el uso de probióticos en el manejo de la sintomatología de la APLV. La incorporación de Lactobacillus rhamnosus (LGG) a fórmulas extensamente hidrolizadas parece tener efectos favorables y duraderos sobre la sintomatología de la APLV (11).

 

6. Fórmulas infantiles sugeridas para el tratamiento de la APLV

 

6.1 Fórmulas con modificaciones en la estructura de la proteína

Se les denomina también hidrolizados proteicos o hidrolizados de proteína. En estas fórmulas, las proteínas han sido parcial o totalmente digeridas por hidrólisis enzimática, tratamiento térmico y ultrafiltración. Los hidrolizados a base caseína generan un aminograma rico en tirosina, fenilalanina y metionina; mientras que los hidrolizados de proteína de suero generan un aminograma rico en treonina, valina, metionina, fenilalanina, leucina e isoleucina. Por esta razón, la fuente de proteína de estas fórmulas suele ser una mezcla de hidrolizados de caseína y de hidrolizados de suero con el objetivo de obtener un aminograma parecido a aquel de la leche humana (12,13). Existen 3 tipos: con proteína parcialmente hidrolizada, con proteína totalmente hidrolizada y monoméricas.

 

  • Fórmulas con proteína parcialmente hidrolizada

Contienen menos de 1% de proteína intacta, aunque pueden encontrarse péptidos de un tamaño molecular superior a 5 000 Da, por lo cual, pueden contener antígenos residuales. El resto de los nutrientes se ajustan a las recomendaciones de los comités internacionales.  Están indicadas en la prevención de alegría a la proteína de la leche de vaca en lactantes con riesgo atópico por las siguientes condiciones: padres alérgicos, IgE total de la madre por padres alérgicos, IgE total de la madre > 120UI/ml o IgE cordón > 1UI/ml.

 

  • Fórmulas con proteína totalmente hidrolizada

Contienen aminoácidos y péptidos con un peso molecular de entre 1500-5000 Da o menos. Son consideradas como fórmulas hipoalergénicas porque su alergenicidad es varias veces menor a aquella de las fórmulas parcialmente hidrolizadas, obstante, no se le puede considerar como “No Alergénicas” porque alguno de los péptidos residuales podría generar reacciones alergénicas en lactantes que presentan anafilaxia a la leche de vaca. Estas fórmulas aportan lípidos bajo la forma de triglicéridos de cadena media (TCM) más un aceite que contenga ácidos grasos esenciales y carbohidratos bajo la forma de dextrinomaltosa o polímeros de glucosa, no contienen lactosa. El aporte de nutrientes de estas fórmulas se ajusta a las recomendaciones de los comités internacionales. Estas fórmulas están enriquecidas con taurina y L-carnitina, presentan mal sabor por su contenido de aminoácidos azufrados y suelen generar heces de consistencia pastosa. Estas fórmulas están indicadas en alergias a la proteína de la leche de vaca y en enfermedades que afecten la digestión y/o absorción de grasa.

 

  • Fórmulas elementales o monoméricas

Son fórmulas sintéticas elaboradas a base de L-aminoácidos, triglicéridos de cadena media (TCM) junto con ácidos grasos de cadena larga y dextrinomaltosa. Estas fórmulas están indicadas en el tratamiento de problemas de digestión y absorción en el tracto gastrointestinal, en la transición entre nutricional parenteral y enteral y en la alegría a la proteína de la leche de vaca cuando el empleo de hidrolizado no ha generado resultados positivos. Debe tenerse cuidado con su elevada osmolaridad y con la deficiencia de vitamina A, D y hierro asociada con su uso prolongado (12,13).

 

6.2 Fórmulas a base de proteína de soya

Son fórmulas cuya fuente de proteína es la soya. Contienen lípidos de origen vegetal y dextrinomaltosa o polímeros de glucosa en lugar de lactosa.  Están suplementadas con metionina, carnitina y taurina. El aporte de nutrientes se ajusta a las recomendaciones de los comités internacionales (12,13). Están indicadas en: alergia a la leche de vaca mediada por IgE, intolerancia primaria o secundaria a la lactosa, galactosemia y en la alimentación de hijos de padres vegetarianos.

 

6.3 Fórmulas a base de proteína de arroz

 Son fórmulas relativamente nuevas. Dado el aminograma de la proteína del arroz, estas fórmulas son suplementadas con aminoácidos para que su puntaje aminoacídico sea similar a aquel de las fórmulas a base de leche de vaca. Su costo es menor comparado con el costo de las fórmulas extensamente hidrolizadas elaboradas a partir de leche de vaca. Su uso se ha difundido bastante en algunos países de Europa. Son sometidas a controles sumamente estrictos relacionados con el contenido de arsénico y pesticidas en el arroz, materia prima de este producto. En términos nutricionales, cubren la totalidad de las necesidades del niño como cualquier otra fórmula.

 

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Plaza Martín AM. Alergia a proteínas de leche de vaca. Protoc diagn ter pediatr. 2013;1:51-61.
  2. Abrams E, Sicherer S. Cow’s milk allergy prevention. Ann Allergy Asthma Immunol 127 (2021) 36-41
  3. Gupta RS, Warren CM, Smith BM, et al. Prevalence and severity of food allergies among US adults. JAMA Netw Open. 2019;2(1):e185630
  4. Fiocchi A, Schünemann HJ, Brozek J, Restani P, Beyer K, Troncone R, et al. World Allergy. Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA). Guidelines. J Allergy Clin Immunol. 2010 Dec;126(6):1–125.
  5. Ministerio de Salud Pública del Ecuador. Prevención, diagnóstico y tratamiento de la alergia a la proteína de la leche de vaca (APLV). Quito: Ministerio de Salud Pública, Dirección Nacional de Normatización -MSP; 2016.80 p: tabs:gra: 18 x 25 cm
  6. Cordero R. Camila, Prado S. Francisca, Bravo J. Paulina. Actualización en manejo de Alergia a la proteína de leche de vaca: fórmulas lácteas disponibles y otros brebajes. Rev. chil. pediatr.  [Internet]. 2018  Jun [citado  2022  Abr  04] ;  89( 3 ): 310-317. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0370-41062018000300310&lng=es.  http://dx.doi.org/10.4067/S0370-41062018005000503.
  7. García, C. Montiel, R. Borderas, T. Grasa y proteína de la leche de vaca: componentes, síntesis y modificación. Zootec. 63(R): 85-105. 2014.
  8. Manejo de la alergia a la proteína de la leche de vaca. México: Secretaria de Salud, 2011.
  9. Guía Clínica Alergia a Proteína de Leche de Vaca. Santiago: Minsal, 2012
  10. Montijo Barrios E, et al. Alergia a las proteínas de la leche de vaca (GL-APLV). Rev Invest Clin 2014; 66 (Supl.2): s9-s72
  11. D’Auria E, Salvatore S, Pozzi E, Mantegazza C, Sartorio MUA, Pensabene L, Baldassarre ME, Agosti M, Vandenplas Y, Zuccotti G. Cow’s Milk Allergy: Immunomodulation by Dietary Intervention. Nutrients. 2019 Jun 21;11(6):1399. doi: 10.3390/nu11061399. PMID: 31234330; PMCID: PMC6627562.
  12. Satriano R. López C, Noel M, Jasinski C, Rebori A. Recomendaciones de uso de fórmulasy fórmulas especiales. Arch Pediatr Urug 2012; 83(2): 128-135
  13. Soler M, San Segundo A. Indicaciones y prescripción de fórmulas especiales. Bol Pediatr 2006; 46: 200-205

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More

Interacción fármaco nutriente el tratamiento de la tuberculosis

En 2020, según datos de la Organización Mundial de la Salud (OMS), aproximadamente 1.5 millones de personas murieron a causa de la tuberculosis (TBC). En ese mismo año se registraron 9.9 millones de casos nuevos (5.5 millones de hombres, 3.3 millones de mujeres y 1.1 millones de niños) y es actualmente considerada como la segunda enfermedad infecciosa más mortífera del mundo (primero está la COVID-19 y debajo el VIH/SIDA) (1). Según datos del Ministerio de Salud del Perú, para el 2020, el número de casos nuevos de tuberculosis ascendieron a 21443. Aunque esta cifra es un 26% menor a aquella del 2019, existe una fuerte preocupación relacionada con una detección menor a consecuencia del confinamiento asociado con la pandemia por COVID-19 (2).


La evaluación de la interacción entre nutrientes y fármacos como parte del proceso de evaluación nutricional

La evaluación del estado nutricional es un proceso dinámico y estructurado con bases científicas que consta de 9 pasos (los 6 primeros obligatorios), los cuales citamos a continuación (3, 4):

  1. Evaluación de la Interacción entre Nutrientes y Fármacos
  2. Evaluación de la Ingesta Alimentaria y de los factores que pueden afectarla
  3. Evaluación de la Actividad Física
  4. Evaluación de Signos Clínicos de Deficiencias y/o Excesos Nutricionales
  5. Evaluación del Crecimiento y/o la Composición Corporal
  6. Evaluación de la Bioquímica Nutricional
  7. Evaluación de la Reserva Visceral
  8. Evaluación del Componente Inmunológico
  9. Evaluación del Componente Catabólico

La evaluación de la interacción entre nutrientes y fármacos es importante por 2 razones básicas: a) permite identificar elementos que pueden afectar significativamente la biodisponibilidad y la acción de los medicamentos y, b) permite identificar los efectos secundarios indeseables que los medicamentos pueden tener sobre el estado nutricional del paciente. Las formas de interacción entre nutrientes y fármacos son diversas, complejas y abundantes. Aunque existen diversas formas de clasificarlas, en la tabla 1 se recoge una propuesta didáctica y lógica. El estado nutricional, los nutrientes, las sustancias no nutritivas (flavonoides, carotenos, alcaloides, entre otros) y los alimentos pueden afectar las características farmacocinéticas (interacciones de clase I) y farmacodinámicas (interacciones de clase II) de los medicamentos; mientras que, estos últimos pueden agredir el estado nutricional del paciente afectando su ingesta o la biodisponibilidad de nutrientes.

Las interacciones de clase I explican los mecanismos que afectan la biodisponibilidad de medicamento en sangre. Por ejemplo, los alimentos reducen significativamente la absorción de los inhibidores de la bomba de protones; la vitamina C destruye la isoenzima CYP3A4 intestinal y puede condicionar una mayor absorción de los medicamentos que metaboliza; una concentración reducida de albúmina en plasma puede alterar la distribución de medicamentos en el cuerpo. Por otro lado, las interacciones de clase II explican como la presencia de ciertas sustancias en los alimentos pueden aumentar (sinergismo) o antagonizar con el efecto de los medicamentos. Por ejemplo, la salsa de soya presenta un contenido alto de tiramina y sodio que pueden generar un efecto vasopresor antagonista de la acción de diversos medicamentos anti hipertensivos. Las interacciones de clase III, aunque en teoría, son más fáciles de identificar en los insertos, son por lo general erróneamente muy poco valoradas.

 

Tabla 1.  Clasificación de las interacciones nutrientes-fármacos

Clase Tipo Subtipo
 

Clase I

 

Interacciones nutricionales farmocinéticas

 

– Interacciones en la liberación de principios activos

– Interacciones en la absorción

– Interacciones en la distribución

– Interacciones en la metabolización

– Interacción en la excreción

 

Clase II

 

Interacciones nutricionales

farmacodinámicas

 

– Antagonismo

– Sinergismo

 

Clase III

 

Interacciones Medicamentosas nutricionales

 

– Los medicamentos pueden afectar la ingesta de

alimentos

– Los medicamentos pueden afectar las características

motoras del tracto gastrointestinal

– Los medicamentos pueden afectar la absorción y/o

la biodisponibilidad de nutrientes

 

Fuente: Referencia 3 y 4


*****************************************
Para más información, click sobre la foto

*****************************

 

¿Cuál es la interacción fármaco nutriente en la terapia contra la tuberculosis?

Los fármacos empleados en el tratamiento de la tuberculosis son variados y están agrupados de diferente forma de acuerdo a la gravedad de la enfermedad, el grado de resistencia, las características epidemiológicas del país entre otros factores. En el Perú, la norma técnica del Ministerio de Salud para la atención de las personas afectadas por la tuberculosis del año 2018 (5) agrupa los medicamentos empleados en el tratamiento de la TBC en diversos esquemas. En conjunto, el tratamiento de la tuberculosis involucra la utilización de 21 medicamentos diferentes (tabla 2). Después de revisar la información técnica disponible sobre cada uno de esos medicamentos, hemos identificado que las más frecuentes son las interacciones de tipo I y III. No se han identificado interacciones de tipo II. Además, a pesar de que los medicamentos empleados como ampolla no presentaron interacciones, esto no debe ser tomado como una generalidad. Existen tratamientos no enterales que igualmente pueden generar interacciones entre nutrientes y fármacos.

Las interacciones de clase I más frecuentes incluyeron:

  • Afectación de la absorción del medicamento por consumo junto con los alimentos
  • Afectación de la absorción del medicamento por la presencia de ciertos minerales en la dieta
  • Posible alteración de la tasa de absorción del medicamento por la afectación de la isoforma CYP3A4
  • Afectación de la distribución del fármaco por niveles reducidos de albúmina

 Las interacciones de clase III más frecuentes incluyeron:

  • Náuseas y vómitos
  • Diarrea
  • Constipación
  • Alteraciones en la glicemia
  • Hiperuricemia
  • Elevación de transaminasas
  • Alteración del apetito
  • Disgeusia
  • Presencia de lactosa/gluten como excipiente
  • Posible efecto hipertensivo sino se controla el consumo de alimentos ricos en tiramina por la inhibición de las enzimas mono amino oxidasas (MAO)
  • Depleción de piridoxina, ácido fólico y vitamina B12 asociada con el consumo del fármaco

 

Finalmente, como nuestra labor al frente de un paciente debe ser contribuir con la mejora de su estado nutricional, esto implica no solo enfrentar los problemas del corto plazo, sino también aquellos que se puedan producir en el tiempo. La atención oportuna de las interacciones identificadas demanda de parte de los profesionales de la nutrición una específica, preventiva y precoz que redundará sobre el bienestar del afectado por esta enfermedad.

 

Tabla 2. Medicamentos empleados en el tratamiento de la tuberculosis, presentación e interacciones nutriente fármaco 

Medicamento Presentación Tipos de interacción
Clase I Clase III
Ácido paraaminosalicílico (6) Sachet –    El HCl puede afectar la estructura del fármaco por lo que debe salir rápidamente del estómago –    Reduce absorción de vitamina B12 (7)
Amikacina (6) Ampolla –     No se encontró interacción –     No se encontró interacción
Amoxicilina/clavulato (6) Tabletas –     No se encontró interacción –     No se encontró interacción
Bedaquilina (6) Tabletas –    Los alimentos mejoran hasta 50% su absorción.

–    Se puede administrar con cualquier tipo de líquido excepto fuentes de vitamina C

–    Es metabolizado por el CYP3A4

–     No se encontró interacción
Capreomicina (6) Ampollas –     No se encontró interacción –     No se encontró interacción
Cicloserina (6,8) Tabletas –    No se encontró interacción –     Depleta B6. En menor medida B12 y B9
Clofazimina (6,9) Cápsulas –    Los alimentos mejoran su absorción hasta en 50% –     Diarrea, dolor de cabeza, coloración rojiza a marrón de la piel
Delamanid (6,10) Tabletas –     Los alimentos mejoran su absorción

–     Unión a proteínas 99% (no debe administrarse en albúmina menor a 2.8 g/dl)

–     Hipocalemia

–     Apetito disminuido

–     Hiperuricemia

–     Vómitos

Etambutol (6) Tabletas –     Los alimentos no afectan su absorción

 

–     Hiperuricemia

–     Pérdida de apetito

–     Náuseas

Estreptomicina (S) (6) Ampolla –     No se encontró interacción –     No se encontró interacción
Etionamida (11, 12) Tabletas –     No se encontró interacción –     Náuseas

–     Vómitos

–     Diarreas

–     Dolor abdominal

–     Salivación excesiva

–     Sabor metálico en la boca

–     Estomatitis

–     Anorexia y pérdida de peso

–     El excipiente puede contener gluten

Imipenem/cilastatina (6) Ampollas –     No se encontró interacción –     No se encontró interacción
Isoniacida (6,13) Tabletas –     Los alimentos reducen su absorción, sin embargo, frente a molestias se pueden consumir juntos.

–     Los antiácidos disminuyen su absorción gastrointestinal

–     Vértigo

–     Dolor estomacal

–     Náuseas

–     Vómitos

–     Cansancio

–     Depleción de piridoxina

Kanamicina (6) Ampollas –     No se encontró interacción –     No se encontró interacción
Levofloxacina (14) Tabletas –     Los alimentos no afectan la absorción del medicamento

–     Los cationes bivalentes o trivalentes (antiácidos de magnesio o aluminio, sucralfato, hierro o zinc) reducen su absorción

–     Náuseas y vómitos

–     Diarrea

–     Alteraciones en la glicemia

Linezolid (6) Tabletas –     No se encontró interacción –     Contiene lactosa.

–     Inhibidor reversible y no selectivo de la IMAO.

–     Diarrea

–     Náuseas y vómitos

–     Dolor abdominal localizado o generalizado

–     Estreñimiento

–     Dispepsia

Meropenem (6) Ampolla –     No se encontró interacción –     No se encontró interacción
Movifloxacino (6) Tabletas –     Los alimentos no afectan la absorción del medicamento

–     Los cationes bivalentes o trivalentes (antiácidos de magnesio o aluminio, sucralfato, hierro o zinc) reducen su absorción

–     Náuseas y vómitos

–     Diarrea

–     Alteraciones en la glicemia

Pirazinamida (15) –     Los alimentos no afectan la absorción del fármaco –     Hiperuricemia

–     Puede afectar la normalización de la glicemia en pacientes con DM2

Rifampicina (6) Jarabe –     Los alimentos afectan su absorción –     Náuseas y vómitos
Thioridazina (6) Tabletas –     Los alimentos no afectan su absorción –     Podría afectar el metabolismo de los carbohidratos

 

 Si quieres saber más sobre el Diplomado de Especialización Profesional en Nutrición Clínica de IIDENUT, te invito a  hacer click en  Información del diplomado

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Ministerio de salud del Perú. Perfil epidemiológico de la TBC. Disponible en http://www.tuberculosis.minsa.gob.pe/DashboardDPCTB/PerfilTB.aspx. Visto el 01.03.2022.
  2. World Health Organization. Tubeculosis. Fact sheets. Disponible en https://www.who.int/es/news-room/fact-sheets/detail/tuberculosis. 21.10.2021.
  3. Comité Internacional para la Elaboración de Consensos y Estandarización en Nutriología (CIENUT). Consenso 3: Procedimientos clínicos para la Evaluación Nutricional. Lima: Fondo editorial IIDENUT. 2019.
  4. Cruz R, Herrera T. Procedimientos Clínicos para la Atención Nutricional en Hospitalización y en Consulta. 1ª edición. IIDENUT SA: Lima. 2013.
  5. Ministerio de Salud del Perú. Norma técnica de salud para la atención integral de las personas afectadas por tuberculosis. NTS 752-2018/MINSA
  6. Fichas técnicas del centro de información online de Medicamentos de la AEMPS-CIMA [base de datos en internet]. Madrid, España: Agencia Española de Medicamentos y Productos Sanitarios (AEMPS) [Consultado el 28/02/2022. Disponible en: https://cima.aemps.es/cima/publico/lista.html
  7. Restrepo Duque CH, Botello Jaimes JJ, Lopez Castro LM, Aguirre Arango JV, Restrepo CA. Impacto de los inhibidores de la bomba de protones en los niveles de vitamina B12 en pacientes con ERC estadio 5 en hemodiálisis: Experiencia de un centro en Manizales, Colombia. Acta Med Col [Internet]. 15 de marzo de 2017 [citado 1 de marzo de 2022];42(3):172-9. Disponible en: http://actamedicacolombiana.com/ojs/index.php/actamed/article/view/807
  8. Comité de Medicamentos de la Asociación Española de Pediatría. Pediamécum. Edición 2015. ISSN 2531-2464. Disponible en: https://www.aeped.es/comite-medicamentos/pediamecum/cicloserina. Consultado el 24.02.2022.
  9. Comité de Medicamentos de la Asociación Española de Pediatría. Pediamécum. Edición 2015. ISSN 2531-2464. Disponible en: https://www.aeped.es/comite-medicamentos/pediamecum/clofazimina. Consultado el 24.02.2022
  10. Ministerio de salud. Dirección General de Medicamentos, Insumos y Drogas (DIGEMID). Evaluación tecnológica sanitaria. Revisión rápida N° 02-2018. Delamanid 50 mg tableta. 2018.
  11. Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANAMT). Síntesis técnica para profesionales: Etionamida. Disponible en: http://www.anmat.gov.ar/Medicamentos/ST_ETIONAMIDA.pdf. Visto el 24.02.2022
  12. Comité de Medicamentos de la Asociación Española de Pediatría. Pediamécum. Edición 2015. ISSN 2531-2464. Disponible en: https://www.aeped.es/comite-medicamentos/pediamecum/etionamida. Consultado el 25.02.2022
  13. Isoniazida: Antituberculosos. In: Rodríguez Carranza R. Vademécum Académico de Medicamentos. McGraw Hill; 2015. Accessed febrero 25, 2022. https://accessmedicina.mhmedical.com/content.aspx?bookid=1552&sectionid=90371634
  14. Comité de Medicamentos de la Asociación Española de Pediatría. Pediamécum. Edición 2015. ISSN 2531-2464. Disponible en: https://www.aeped.es/comite-medicamentos/pediamecum/levofloxacino. Consultado el 25.02.2022
  15. Ministerio de salud. Dirección General de Medicamentos, Insumos y Drogas (DIGEMID). Centro de atención farmacéutica (CAF DIGEMID). Pirazinamida 500 mg.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More

La sal, tipos, riesgos y cuidados relacionados con su consumo

Mucho antes que la humanidad le atribuyera un valor comercial al oro, los diamantes o el petróleo, la sal ya era con creces uno de los tesoros más importantes del planeta. El dinero para construir la Gran Muralla China fue costeado, en parte, por un impuesto grabado a la sal. Los romanos pagaban a sus empleados públicos con sal (de allí el término de salario, del latín salarium). Los europeos se enteraron de las maravillas de oriente, gracias a las caravanas que comerciaban sal desde Asia hasta Florencia (luego se formaría Italia). Uno de los factores que provocó el inicio de la revolución francesa fue el incremento de los impuestos a la sal. La misma razón, llevó Ghandi a comenzar una revolución que culminaría con la independencia de la India. Más allá de la importancia histórica de la sal y desde el punto de vista orgánico, este mineral es fundamental para el sostenimiento de la vida. Su consumo excesivo es responsable del desarrollo de enfermedades serias y por supuesto la muerte.  Visible o invisible, la sal está presente de mil maneras en nuestra dieta. Revisemos brevemente algunos aspectos específicos de lo que una vez fue conocido el oro blanco.

 

¿Qué es la sal?

La sal común es uno de los minerales más estudiados del mundo. Químicamente, el cloruro de sodio o sal común está formado por un átomo de sodio (Na+2) y un átomo de cloro (Cl -1) en una proporción de 40%/60%, respectivamente.

El término sal y sodio suelen ser usados como sinónimos por lo cual es usual que generen confusión sobre la cantidad exacta de sodio consumido o sobre las recomendaciones elaboradas por organismos internacionales. Un gramo de sal equivale a 0,4g de sodio, por lo tanto, si se busca convertir gramos de sal en gramos de sodio solo se debe dividir el valor de sal entre 2.5. Por ejemplo, la Organización Mundial de la salud (OMS) recomienda que la ingesta de sal no debería superar los 5 g por día (1). Llevado a términos de sodio, 5 entre 2.5 equivale a 2 g de sodio o 2000 mg (1 g equivale a 1000 mg).

Según información de la OMS, la sal es la principal fuente de sodio de nuestra alimentación. El consumo medio de la población mundial fluctúa entre los 9 y 12 g al día. Sobre este último aspecto, en muchos países, el 80% de esta sal proviene de alimentos procesados, es decir, que podríamos no agregarle sal a la comida y estaríamos consumiendo una cantidad elevada. Un consumo inferior a 5 g/d podría reducir significativamente la prevalencia de enfermedades cardiovasculares y podría evitar en términos generales hasta 2.5 millones de muertes al año.

 

¿Cuál es el papel del sodio en el equilibrio del medio interno?

El sodio es el más abundante catión extracelular. Un adulto promedio contiene alrededor de 92g de sodio distribuidos en el espacio extracelular (46g), en el espacio intracelular (11g) y en el esqueleto (35 g)(2). Está marcada diferencia de concentración entre el espacio extra e intracelular es mantenida gracias a la acción de la enzima dependiente de ATP llamada bomba de sodio potasio. La sodio-potasio atepasa extrae sodio desde el interior de la célula y paralelamente introduce potasio a la misma.

La mayor parte de la absorción de sodio se lleva a cabo en el tercio distal del intestino delgado y en colon. El sodio ingresa a estas células a través de canales específicos que por lo general están asociados a fosfatos, aminoácidos, glucosa y galactosa. Una vez dentro, el sodio es expulsado a los espacios basolaterales (espacio libre entre célula y célula) por la acción de la bomba sodio-potasio. El sodio es el principal determinante de la osmolaridad plasmática y su equilibrio está fuertemente asociado con el mantenimiento del volumen de agua. El riñón regula la excreción de sodio. La mayor parte del sodio filtrado en la cápsula glomerular es re-absorbido en los túbulos debido a la acción del sistema renina-angiotensina-aldosterona.

El sodio es fundamental para el mantenimiento del espacio extracelular, para la excitabilidad de las células musculares y nerviosas y en menor medida para el transporte de nutrientes a través de las membranas plasmáticas. La deficiencia de sodio en personas aparentemente sanas es extremadamente rara porque incluso sin añadir sal a la comida estamos expuestos a fuentes diversas de este mineral. No obstante, existe cuadros patológicos que si podrían generar una deficiencia preocupante como es el caso de personas con vómitos recurrentes, drenajes altos, extracción constante de líquido como sucede por ejemplo en una ascitis, entre otros. Por otro lado, la toxicidad aguda en personas aparentemente sanas tampoco es probable. Sería necesario que la persona consuma en un momento alrededor de 1g/kg de peso para tener consecuencias fatales. Sin embargo, el consumo regular de sodio, si podría ser mortal en personas con patologías activas como la enfermedad renal crónica, la hipertensión arterial, entre otras (2).


*****************************************
Para más información, click sobre la foto

*****************************

 

¿Cuál es la relación del consumo de sal con diferentes enfermedades?

El consumo excesivo de sal (sodio) puede generar comorbilidades crónicas como la hipertensión arterial, falla cardíaca, paro cardíaco, enfermedad cardiovascular, enfermedad renal (3) e incluso cáncer.

En relación con los problemas cardiovasculares. De acuerdo con la OMS, 17.9 millones de muertes anuales son atribuibles a la enfermedad cardiovascular que, además, representa el 44% de todas las muertes por enfermedades no trasmisibles. La hipertensión, en este sentido, incrementa significativamente el riesgo de padecer enfermedad cardiovascular. El estudio INTERSALT encontró una asociación directa entre la excreción de sodio en orina de 24 horas y el consumo de sal a partir de la dieta. Diversos trabajos alrededor del mundo han mostrado un efecto beneficioso y significativo en la reducción de la presión arterial a partir de la reducción en el consumo de sal (4). Sin embargo, es importante precisar que todavía existe cierta controversia sobre cuánta debe ser la restricción ideal. Recientemente se ha acuñado el término sensibilidad y resistencia a la sal para explicar la respuesta de la presión arterial frente al consumo de sal. No todos responden igual. Probablemente las personas más sensibles sean los adultos mayores, pacientes de raza negra, pacientes con diabetes mellitus o enfermedad renal crónica. [Nota. El 90% del sodio se excreta a través de la orina, por lo cual, una mayor excreción de sodio en orina de 24 horas está directamente relacionada con el consumo. En función de ello, mientras más sodio consumimos, mayor será su excreción urinaria. La excreción urinaria de sodio en orina de 24h es considerado el gold estándar para la valoración del sodio].

En relación con la enfermedad renal crónica (ERC). La evidencia disponible ha demostrado una fuerte asociación entre el desarrollo de ERC y la hipertensión arterial (HTA)(ésta está relacionada con el consumo excesivo de sodio). Además, la HTA es el principal factor conocido para la progresión de la ERC.  Los pacientes con HTA presentan un 75% más riesgo de desarrollar ERC que los sujetos normotensos. Se estima un incremento de 10% en este riesgo por cada 10 mmHg de incremento en la presión arterial. Incluso la pre-hipertensión (presión sistólica de 120-139 mmHg y/o diastólica de 80-89 mmHg) incrementa en un 25% el riesgo de daño en la filtración glomerular. De acuerdo con la teoría clásica, el consumo excesivo de sodio incrementa temporalmente los niveles de sodio plasmático, lo cual, genera la movilización de agua hacia el espacio vascular. Esto incrementa la osmolaridad de la sangre, la sensación de sed, la supresión del sistema renina-angiotensina-aldosterona (la actividad de este sistema sirve par retener sodio) y otros cambios que sirven para normaliza el equilibrio vascular. Sin embargo, con el tiempo estos cambios en la presión pueden generar remodelación de la estructura capilar renal y afectar su funcionamiento, lo cual a la larga, genera la enfermedad (5). Recientemente se ha propuesto un mecanismo alternativo que propone que la piel actuaría como una especie de reservorio de sodio que no es controlado por el riñón. Este sodio sería detectado por el sistema monocito-fagocito de la piel estimulando a estas células a producir proteínas de unión al potenciador sensible a la osmolaridad (Ton-EBP, por sus siglas en inglés para Tonicity-enhacer binding protein). El Ton-EBP actuaría como un factor de transcripción que desencadenaría la producción de diversas citoquinas con potencial pro-inflamatorio e hipertensivo (6)

En relación con el cáncer. Tradicionalmente se ha estudiado la relación entre el cáncer gástrico y el consumo excesivo de sal. El mecanismo está relacionado con el papel pro-inflamatorio que tiene la sal sobre la mucosa del estómago y como esta inflamación generaría las condiciones necesarias para el anidamiento del helicobacter pilori y a la larga el desarrollo de úlcera y cáncer (7). No obstante, ahora se ha ido más allá. Diversos estudios han mostrado que los tumores sólidos suelen ser más ricos en sodio que el tejido circundante. Parece ser que el sodio modularía cambios en el sistema autoinmune que podría desencadenar en el desarrollo del cáncer. Sobre este aspecto, la evidencia es todavía muy incipiente (8).

  

¿Cuál es la sal más saludable?

En años recientes, el número de tipos y marcas de sal ha crecido exponencialmente. En la tabla 1, describimos algunas de las más conocidas. Del mismo modo en que ha crecido la oferta, también se han incrementado los claims o declaraciones de salud asociadas con el consumo de estos productos. Sin dejar de mencionar que su costo es varias veces mayor a aquel de la sal común, también es necesario precisar que poco o nada de lo que se propone ha sido verificado científicamente. Hagamos algunas precisiones.

A) Desde el punto de vista nutricional, todos estos tipos de sal presentan la misma composición, es decir, son cloruro de sodio. Pueden ser más finas, más gruesas, de diferentes colores, aromatizadas, con formas peculiares, entre otras características, sin embargo, son cloruro de sodio. Mientras cantidad sea consumida, más sodio ingerirá la persona [Nota. Existe un tipo de sal, exenta de sodio, el cloruro de potasio. Esta sal está indicada para pacientes con problemas cardiovasculares y sensibles al sodio. Su consumo se debe hacer bajo estricta supervisión profesional].

B) La sal se puede obtener de salares, de minas y, en menos proporción, a partir del hervido de ciertas plantas. Los salares son fuentes de agua salada (mares o manantiales). En ellos, la evaporación del agua permite que el sedimento de sal pueda ser recogido y procesado. Las minas se encuentran en diferentes partes del mundo y a diferentes profundidades. De ellas, se obtienen grandes bloques de sal que luego son pulverizados. Sobre el hervido de plantas, es una práctica artesanal muy poco empleada en occidente. En cualquiera de los casos estamos hablando de cloruro de sodio. Quizás en las sales más gruesas haya algo menos de preservantes, sin embargo, esto no les confiere una ventaja comparativa.

C) La sal se ha utilizado como una forma de administrar yodo o flúor a poblaciones con riesgo de deficiencia de estos elementos. No obstante, esto no justifica un consumo excesivo porque la persona podría obtener estos nutrientes con un consumo extremadamente pequeño de sal.

D) La presentación de la sal (grano muy fino, grano grueso, escamas, pétalos) o sus colores (rojo, rosado, negro, gris) no representan ventajas nutricionales.

 

Tabla 1. Tipos de sal y algunas de sus características

Tipo de sal Características
Sal común o de mesa Es la forma más económica y más comercializada. Es común que sea utilizada como forma de administrar yodo o flúor a poblaciones vulnerables. La ventaja nutricional de contener flúor o yodo no justifica su consumo excesivo.
Sal marina El término marino es más bien comercial, porque la sal común también puede ser marina. Por lo general, el término marino es usado para sales de grano más grueso.
Sal gruesa o para hornear Es una variante de la sal común, pero con grano más grande.

 

Sal Maldon La sal se presenta como escamas delgadas. Es una sal como denominación de origen, altamente apreciada en la alta cocina.
Flor de sal La sal se presenta como cristales diminutos.

 

Escamas o pétalos de sal Son variantes de la sal de Maldon, provenientes de otras regiones.
Sal kosher La sal se presenta más gruesa y se llama así porque era utilizada tradicionalmente para preparar kosher
Sal del himalaya o sal rosa Esta sal es extraída de la mina de Khewra en Pakistán. Su color rosa se debe a los residuos de hierro y otros minerales que son arrastrados en el proceso de extracción de la sal. A pesar de esta particularidad, no presenta ventajas nutricionales.
Sal negra de Hawái Esta sal presenta trazas de carbón vegetal, lo cual, le otorga esa tonalidad. La presencia de carbón no le otorga ventajas nutricionales.
Sal Kala Namak o sal negra del Himalaya Esta sal presenta compuestos azufrados debido al proceso de extracción. Estos compuestos no le otorgan ventajas nutricionales.
Sal ahumada Esta sal es expuesta al humo de diferentes maderas para otorgarle ese sabor particular. Como este proceso de ahumano es artesanal, la sal puede captar sustancias genotóxicas disueltas en el humo.
Sales aromatizas diversas Esta sal viene con aromas de ajo, de pimentón, de romero, de cebolla o de apio. El aroma no le otorga ventajas nutricionales

 

Sal líquida Puede encontrarse en dos presentaciones: i) sal diluida en agua, o ii) agua de mar pasteurizada. No presentan ventajas nutricionales.

 

¿Qué es la sal oculta?

El término “sal oculta” hace referencia al sodio que forma parte de los aditivos presentes en los alimentos procesados. Los aditivos son sustancias que se agregan intencionalmente a los alimentos con objetivos diversos que van desde la preservación hasta la mejora de la apariencia pasando por el sabor. Bhat et al (9), en una revisión sistemática sobre el consumo de sal alrededor del mundo, mostró que los alimentos que mayor contenido de sodio presentaban eran el pan y los productos de panadería, los cereales y granos procesados, los productos cárnicos y los derivados lácteos, lo cual, fue congruente con observaciones previas en Colombia (10) y Brasil (11). En este sentido, se debe incidir en la importancia de la lectura crítica de la información nutricional de los productos envasados. Los aditivos que más contribuyen con el aporte de sodio de estos alimentos son:

 

– Glutamato monosódico

– Citrato de sodio

– Sulfito y sulfato de sodio

– Caseinato de sodio

– Benzonato de sodio

– Hidróxido de sodio

– Fosfato de disodio

– Propionato de sodio

– Nitrito y nitrato de sodio

– malato de sodio

 


Si quieres saber más sobre el Diplomado de Especialización Profesional en Nutrición Clínica de IIDENUT, te invito a  hacer click en  
Información del diplomado

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. Organización Mundial de la Salud (OMS). Reducir el consumo de sal. Hoja informativa. Abril 2020. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/salt-reduction
  2. Strazzullo P, Leclercq C. Sodium. Adv Nutr. 2014 Mar 1;5(2):188-90. doi: 10.3945/an.113.005215. PMID: 24618759; PMCID: PMC3951800.
  3. Patel Y, Joseph J. Sodium Intake and Heart Failure. Int J Mol Sci. 2020 Dec 13;21(24):9474. doi: 10.3390/ijms21249474. PMID: 33322108; PMCID: PMC7763082.
  4. Wang YJ, Yeh TL, Shih MC, Tu YK, Chien KL. Dietary Sodium Intake and Risk of Cardiovascular Disease: A Systematic Review and Dose-Response Meta-Analysis. Nutrients. 2020 Sep 25;12(10):2934. doi: 10.3390/nu12102934. PMID: 32992705; PMCID: PMC7601012.
  5. Borrelli S, Provenzano M, Gagliardi I, Michael A, Liberti ME, De Nicola L, Conte G, Garofalo C, Andreucci M. Sodium Intake and Chronic Kidney Disease. Int J Mol Sci. 2020 Jul 3;21(13):4744. doi: 10.3390/ijms21134744. PMID: 32635265; PMCID: PMC7369961.
  6. Fernández P, Calero F. ¿Cómo influye el consumo de sal en la presión arterial? Mecanismos etiopatongénicos asociados Hipertens Riesgo Vasc. 2018;35(3):130-135
  7. D’Elia L, Galletti F, Strazzullo P. Dietary salt intake and risk of gastric cancer. Cancer Treat Res. 2014;159:83-95. doi: 10.1007/978-3-642-38007-5_6. PMID: 24114476.
  8. Allu AS, Tiriveedhi V. Cancer Salt Nostalgia. Cells. 2021 May 21;10(6):1285. doi: 10.3390/cells10061285. PMID: 34064273; PMCID: PMC8224381.
  9. Bhat S, Marklund M, Henry ME, Appel LJ, Croft KD, Neal B, Wu JHY. A Systematic Review of the Sources of Dietary Salt Around the World. Adv Nutr. 2020 May 1;11(3):677-686. doi: 10.1093/advances/nmz134. PMID: 31904809; PMCID: PMC7231587.
  10. Carmona I, Gómez B, Gaitán D. Contenido de sodio en alimentos procesados comercializados en Colombia, según el etiquetado nutricional. Perspect Nut Hum  [Internet]. 2014  June [cited  2022  Feb  18] ;  16( 1 ): 61-82. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-41082014000100006&lng=en.
  11. Teixeira AZA. Sodium content and food additives in major brands of Brazilian children’s foods. Cien Saude Colet. 2018 Dec;23(12):4065-4075. doi: 10.1590/1413-812320182312.21812016. PMID: 30539991.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More

Bioquímica nutricional del aceite de oliva, coco, ghee y otras grasas usadas para cocinar

Desde el mediático aceite de oliva hasta el recién llegado a occidente ghee, la oferta de “grasas saludables” ha crecido exponencialmente en el mercado mundial. Estos productos vienen acompañados de declaraciones de salud variadas y abundantes. Se presentan como una estrategia tanto en la prevención como en el manejo nutricional de patologías como la obesidad, las enfermedades cardiovasculares, las dislipidemias y otras tantas relacionadas. Aunque productos como el aceite de oliva presentan cientos de investigaciones que respaldan sus beneficios para la salud, otros como el ghee nos muestran una propuesta más ancestral y hasta esotérica que, vale la pena mencionar, está en pleno proceso de investigación. Debido al número de productos disponibles y a la cantidad de información disponible, es evidente, que será necesario abordarlos individualmente. Por el momento, el objetivo de este artículo es contribuir con la construcción de una opinión fundamentada sobre la forma en que deberían ser utilizadas diariamente. A continuación, algunas ideas.

 

En principio, repasemos brevemente cómo se clasifican las grasas

Las grasas pertenecen a un grupo más grande de compuestos que se denomina lípidos. Los lípidos se pueden clasificar de diferente forma. Una de las más usadas los agrupa en saponificables y no saponificables, de acuerdo con la presencia, o no, de al menos un ácido graso dentro de la molécula [Nota. Los ácidos grasos son moléculas orgánicas que en presencia de calcio tienden a formar jabones, de allí su calificación como saponificables].

Los lípidos saponificables se clasifican a su vez en simples y complejos. Los simples incluyen a los aceites, grasas y ceras. Los complejos incluyen a los esfingolípidos y glicerolípidos, moléculas que tienen en común la presencia de al menos un ácido graso acompañado de un glicerol o una enfigosina más otro ácido graso o un azúcar u otro elemento complementario. Por otro lado, los lípidos insaponificables, aunque no presentan ácidos grasos en su composición, son considerados lípidos por sus propiedades físicas. En este grupo encontramos, por ejemplo, a las vitaminas liposolubles, a los eicosanoides (prostaglandinas, tromboxanos y leucotrienos), al colesterol y hormonas colesterogénicas, entre otros compuestos.

Tanto los aceites como las grasas también son conocidos como triglicéridos; están formados por un glicerol y tres ácidos grasos y representan más del 90% de todos los lípidos existentes en la naturaleza. Los aceites son líquidos a temperatura ambiente, mientras que las grasas son sólidas. Esta variación en la fluidez a temperatura ambiente está relacionada con el tipo de ácido graso que forma el triglicérido. En los aceites abundan los ácidos grasos insaturados, en las grasas abundan los ácidos grasos saturados. [Nota. Los ácidos grasos son cadenas hidrocarbonadas (CH) en cuyos extremos encontramos por un lado un grupo metilo (CH2) y por el otro un grupo carboxilo (COOH). En términos de longitud, los ácidos grasos pueden ser cortos (contienen hasta 6 carbonos), medianos (contienen entre 8-12 carbonos) o largos (contienen 14 o más carbonos). Los ácidos grasos pueden ser saturados (no presentan dobles enlaces), monoinsaturados (presentan un doble enlace) o poliinsaturados (presentan más de un doble enlace). Los ácidos grasos saturados son, por lo general, sólidos a temperatura ambiente; mientras que los insaturados son líquidos].

De esta primera parte, debería quedar en claro un concepto: las grasas saturadas están hechas para ser almacenadas. La ausencia de dobles enlaces en su estructura las vuelve líneas e idóneas para ser almacenadas. Las grasas insaturadas, por otro lado, se almacenan con dificultad. La presencia de dobles enlaces les otorga flexiones y un volumen difícil de empaquetar.


*****************************************
Para más información, click sobre la foto

*****************************

 

¿Cuál es el impacto de la cocción sobre los aceites y grasas?

 La respuesta de los aceites y grasas frente a las diferentes técnicas de cocción estará influenciada por el tipo de ácido graso que contienen. La temperatura de cocción es probablemente el principal determinante del comportamiento de aceites y grasas al momento de usarlos para cocinar. Los ácidos grasos insaturados son débiles frente a temperaturas de cocción altas y pueden descomponerse con facilidad generando compuestos tóxicos, mientras que los ácidos grasos saturados, al no presentar dobles enlaces, toleran mejor las temperaturas de cocción altas.

La cocción al vapor, el estofado o el sancochado son procesos en los cuales la temperatura de cocción difícilmente supera los 150°C (1); mientras que la temperatura necesaria para freír, sobre todo bajo la forma de inmersión, puede variar entre 160-190° (2).  Cabe añadir que la temperatura en los hornos de convección, las parrillas, el grill o las brasas puede fluctuar entre los 200-400°C.

Aunque en la práctica existen diferentes características que permiten evaluar la calidad de un aceite o una grasa destinado a la cocina, el punto de humo es probablemente uno de los más cercanos y accesibles. El punto de humo es la temperatura a la cual el aceite o la grasa produce un espiral continuo de humo que actúa como un indicador de que el aceite o la grasa ha alcanzado su punto máximo de tolerancia al calor. El punto de humo está relacionado con la cantidad de ácidos grasos libres presentes en el aceite o grasa, es decir, no solo importa el contenido de ácidos grasos insaturados, sino que además importa la presencia de ácidos grasos libres. Por definición, mientras más alto sea el punto de humo, más apropiado será el aceite o la grasa para cocinar o freír. Sin embargo, debe ser precisado que mientras más veces re-utilice el mismo aceite o grasa, el punto de humo será cada vez menor. Por ejemplo, si en el primer uso fue de 200°C, en su segundo uso podría ser 170°C, en el tercer uso 140°C y así sucesivamente. Mientras más bajo sea el punto de humo, más rápido se empezarán a producir sustancias tóxicas al someter al aceite o grasa a la temperatura (3). Cuando un aceite o grasa alcanza su punto de humo se empiezan a producir una serie de reacciones químicas que incluyen: oxidación, hidrólisis, la ciclalización, la polimerización y eventualmente degradación hasta compuestos volátiles altamente cancerígenos (también llamados genotóxicos)(4). Además, también se produce la ruptura de enlace que genera una liberación significativa de cantidades importantes de especies reactivas de oxígeno (ROS). Éstos pueden contribuir con el aumento de la presión arterial, producir ateroesclerosis, disfunción endotelial, vaso relajación fallida y dislipidemias (2,5).

 

¿Qué consideraciones debemos tener para emplear diferentes tipos de grasas?

En la tabla 1, hemos incluido a la mayoría de aceites y grasas comercialmente disponibles. Además, para cada uno de ellos, se ha considerado el porcentaje de ácidos grasos saturados e insaturados y el valor del punto de humo. Cabe precisar que el punto de humo puede presentar ciertas variaciones de país a país, debido a las características del fruto utilizado para la extracción del aceite, por ejemplo, existen diversas variades de palta.

 

Consideraciones generales

  • Los ácidos grasos insaturados son menos resistentes a la temperatura que los ácidos grasos saturados. Los ácidos grasos insaturados se descomponen con facilidad conforme la temperatura se va acercando al punto de humo. Los ácidos grasos saturados son más resistentes a la temperatura, sin embargo, cuando los consumimos se almacenan casi de inmediato.
  • Los ácidos grasos insaturados se almacenan con dificultad. Llegan al hígado donde son empleados en reacciones fisiológicas. Aquellos que no son utilizados serán metabolizados hasta energía. El exceso de energía será convertido en ácidos grasos saturados. Una parte de estos ácidos grasos pueden quedar depositada en el hígado o ser exportados hacía el tejido muscular dentro de las lipoproteínas de muy baja densidad (VLDL).

 

Consideraciones en relación con los aceites

  • En todos los casos, mientras más refinado sea el aceite más alto será su punto de humo y, por lo tanto, el aceite será más seguro frente a altas temperaturas. En este sentido, si el aceite presenta un punto de humo menor a 200°C, debería ser destinado de manera exclusiva a preparaciones que no incluyan altas temperaturas como las frituras. Lamentablemente, mientras más refinado es el aceite menor contenido de sustancias con propiedades beneficiosas para la salud.
  • Los aceites más comunes empleados en la cocina por lo general son mezclas (blends) de diferentes aceites refinados. Las mezclas más comunes son: aceite de algodón, soya o girasol con canola. Estas mezclas presentan un precio más económico.
  • Los aceites más comunes empleados para cocinar presentan un punto de humo que, por lo general, se encuentra alrededor de los 200°C; este valor otorga cierta resistencia a la temperatura.
  • En la actualidad, los envases de muchos aceites incluyen un dispensador a presión (spray). Algunos de estos envases utilizan el isobutano o propano como gases propelentes, otros no. Es mejor sugerir el uso de sprays dispensadores libres de estos gases.
  • En función de su composición, los aceites de almendras, canola, cártamo, colza girasol, lino (semilla) y mostaza son relativamente más seguros por su bajo contenido de ácidos grasos saturados. El aceite de coco, palma, palmiste, palmoleina y vanaspati son de cuidado por su alto contenido de ácidos grasos saturados. Habría que hacer una excepción con el aceite de coco que, aunque presenta un 92% de ácidos grasos saturados más del 65% de los mismos, son de cadena media, es decir, se absorben directamente al hígado para se usados como fuente de energía. Los ácidos grasos de cadena media no son colesterogénicos, no obstante, cuando son consumidos en exceso pueden contribuir con el desarrollo de hígado graso. En el caso del aceite de oliva, su composición es bastante segura y existe evidencia suficiente para considerarlos seguros en relación con el tipo de ácidos grasos que contienen. El resto deberían ser consumidos con moderación porque por lo general los ácidos grasos más abundantes en su composición son palmítico y esteárico, lo cuales son considerados colesterogénicos.
  • En relación con el punto de humo y cómo aplicarlo en la práctica diaria, el aceite de lino por ejemplo, solo debe ser usado como aderezo de ensaladas y preparaciones que no incluyan calor porque su punto de humo es uno de los más bajos, 107°C. El aceite de oliva refinado es seguro para freir; mientras que el extra virgen debería, en lo posible, ser usado para preparaciones que incluyan temperaturas bajas.

 

Consideraciones en relación con las grasas

  • El ghee y la mantequilla clarificada son dos caras de una misma moneda. El primero es una preparación artesanal donde se hace hervir la mantequilla hasta que se extrae toda la proteína y restos de lactosa y solo queda la grasa. En el segundo caso, se hace lo mismo, pero de manera más industrial. En ninguno de los dos casos, se debería considerar un producto hipoalergénico porque podrían seguir quedando trazas de péptidos.
  • En función de su composición, el ghee, la mantequilla clarificada, la mantequilla y la manteca de cerdo tiene un contenido significativamente alto de grasa saturada, por tanto, deben ser consumidos con mucha precaución por personas que presentan problemas cardiovasculares, dislipidemias, obesidad entre otras. Finalmente, los ácidos grasos saturados se almacenan directamente.
  • En relación con el punto de humo, el ghee y la mantequilla clarificada son bastante resistentes a las altas temperaturas; mientras que la mantequilla y la manteca de cerdo no.

 

Tabla 1. Valores expresados sobre la base del contenido de grasa

Aceites y grasas

% ácidos grasos saturados (6-24)

% ácidos grasos insaturados (6-24)

Punto de humo (25,26)

Aceites      
Aceite de almendras

 <10

90

221

Aceite de ajonjolí o sésamo virgen

15

85

170

Aceite de ajonjolí o sésamo refinado

15

85

232

Aceite de algodón (semilla)

25

75

220-230

Aceite de canola

7

93

200

Aceite de cártamo

6

94

232-265

Aceite de colza

10

90

226

Aceite de coco

92

8

175

Aceite de girasol

9

91

232

Aceite de lino (semilla)

10

90

107

Aceite de maíz

12

88

232

Aceite de maní

19

81

232

Aceite de mostaza

< 5

95

235

Aceite de olivo extra virgen

13-19

81-87

160-190

Aceite de olivo virgen

13-19

81-87

210

Aceite de olivo refinado

13-19

81-87

200-243

Aceite de palta refinado

10-25

75-90

220-271

Aceite de palma

49

51

235

Aceite de palmiste (kernel de palma)

82

8

235

Aceite de salvado de arroz

25

75

230

Aceite de soja

14

86

234

Aceite de uva (semilla)

 10

90

216

Manteca de palma o palmoleina

50

50

200

Vanaspati

50

50

200

Grasas      
Ghee

55-60

40-45

250

Mantequilla clarificada

55-60

40-45

250

Mantequilla

45

55

176

Manteca de cerdo

50

50

190

Fuente: Referencias 6-26

 


Si quieres saber más sobre el Diplomado de Especialización Profesional en Nutrición Clínica de IIDENUT, te invito a  hacer click en  
Información del diplomado

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

Referencias Bibliográficas

  1. [tesis doctoral] Agudelo L. Determinación de aminas aromáticas heterocíclicas en carnes cocidas mediante extracción con microondas y líquidos iónicos. Universidad Nacional de la plata. Argentina 2015. Disponible en: http://sedici.unlp.edu.ar/handle/10915/46523.
  2. Kumar Ganesan, Kumeshini Sukalingam & Baojun Xu (2017): Impact of consumption of repeatedly heated cooking oils on the incidence of various cancers- A critical review, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2017.1379470.
  3. Boateng L, Ansong R, Owusu WB, Steiner-Asiedu M. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana Med J. 2016 Sep;50(3):189-196. PMID: 27752194; PMCID: PMC5044790.
  4. Ganesan K, Sukalingam K, Xu B. Impact of consumption of repeatedly heated cooking oils on the incidence of various cancers- A critical review. Crit Rev Food Sci Nutr. 2019;59(3):488-505. doi: 10.1080/10408398.2017.1379470. Epub 2017 Oct 20. PMID: 28925728.
  5. Kadhum AA, Shamma MN. Edible lipids modification processes: A review. Crit Rev Food Sci Nutr. 2017 Jan 2;57(1):48-58. doi: 10.1080/10408398.2013.848834. PMID: 26048727.
  6. Ouzir M, Bernoussi SE, Tabyaoui M, Taghzouti K. Almond oil: A comprehensive review of chemical composition, extraction methods, preservation conditions, potential health benefits, and safety. Compr Rev Food Sci Food Saf. 2021 Jul;20(4):3344-3387. doi: 10.1111/1541-4337.12752. Epub 2021 May 30. PMID: 34056853.
  7. Wacal C, Ogata N, Basalirwa D, Sasagawa D, Kato M, Handa T, Masunaga T, Yamamoto S, Nishihara E. Fatty Acid Composition of Sesame (Sesamum indicum) Seeds in Relation to Yield and Soil Chemical Properties on Continuously Monocropped Upland Fields Converted from Paddy Fields. Agronomy. 2019; 9(12):801. https://doi.org/10.3390/agronomy9120801.
  8. Zia MA, Shah SH, Shoukat S, Hussain Z, Khan SU, Shafqat N. Physicochemical features, functional characteristics, and health benefits of cottonseed oil: a review. Braz J Biol. 2021 Aug 9;82:e243511. doi: 10.1590/1519-6984.243511. PMID: 34378680.
  9. Lee YC, Oh SW, Chang J, Kim IH. Chemical composition and oxidative stability of safflower oil prepared from safflower seed roasted with different temperatures. Food Chemistry. 2004 Jan;84(1):1-6. https://doi.org/10.1016/S0308-8146(03)00158-4.
  10. Sagan A, Blicharz-Kania A, Szmigielski M, Andrejko D, Sobczak P, Zawiślak K, Starek A. Assessment of the Properties of Rapeseed Oil Enriched with Oils Characterized by High Content of α-linolenic Acid. Sustainability. 2019; 11(20):5638. https://doi.org/10.3390/su11205638.
  11. Deen A, Visvanathan R, Wickramarachchi D, Marikkar N, Nammi S, Jayawardana BC, Liyanage R. Chemical composition and health benefits of coconut oil: an overview. J Sci Food Agric. 2021 Apr;101(6):2182-2193. doi: 10.1002/jsfa.10870. Epub 2020 Oct 29. PMID: 33022082.
  12. Martinchik AN, Baturin AK, Zubtsov VV, Molofeev VIu. [Nutritional value and functional properties of flaxseed]. Vopr Pitan. 2012;81(3):4-10. Russian. PMID: 22888664.
  13. Akhtar S, Khalid N, Ahmed I, Shahzad A, Suleria HA. Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: a review. Crit Rev Food Sci Nutr. 2014;54(12):1562-75. doi: 10.1080/10408398.2011.644353. PMID: 24580558.
  14. Sawicka B, Kotiuk E, Kiełtyka-Dadasiewicz A, Krochmal-Marczak B. Fatty Acids Composition of Mustard Oil from Two Cultivars and Physico-chemical Characteristics of the Seeds. J Oleo Sci. 2020 Mar 1;69(3):207-217. doi: 10.5650/jos.ess19171. Epub 2020 Feb 13. PMID: 32051354.
  15. Flores M, Saravia C, Vergara CE, Avila F, Valdés H, Ortiz-Viedma J. Avocado Oil: Characteristics, Properties, and Applications. Molecules. 2019 Jun 10;24(11):2172. doi: 10.3390/molecules24112172. PMID: 31185591; PMCID: PMC6600360.
  16. Gesteiro E, Galera-Gordo J, González-Gross M. Aceite de palma y salud cardiovascular: consideraciones para valorar la literatura [Palm oil and cardiovascular health: considerations to evaluate the literature critically]. Nutr Hosp. 2018 Oct 8;35(5):1229-1242. Spanish. doi: 10.20960/nh.1970. PMID: 30307309.
  17. Punia, S, Kumar, M, Sandhu, KS, et al. Rice-bran oil: An emerging source of functional oil. J Food Process Preserv. 2021; 45:e15318. https://doi.org/10.1111/jfpp.15318.
  18. Sohail M, Rakha A, Butt MS, Iqbal MJ, Rashid S. Rice bran nutraceutics: A comprehensive review. Crit Rev Food Sci Nutr. 2017 Nov 22;57(17):3771-3780. doi: 10.1080/10408398.2016.1164120. PMID: 27015585.
  19. Pal YP, Pratap AP. Rice Bran Oil: A Versatile Source for Edible and Industrial Applications. J Oleo Sci. 2017;66(6):551-556. doi: 10.5650/jos.ess17061. PMID: 28566641.
  20. Garavaglia J, Markoski MM, Oliveira A, Marcadenti A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr Metab Insights. 2016 Aug 16;9:59-64. doi: 10.4137/NMI.S32910. PMID: 27559299; PMCID: PMC4988453.
  21. Lv C, Wang Y, Zhou C, Ma W, Yang Y, Xiao R, Yu H. Effects of dietary palm olein on the cardiovascular risk factors in healthy young adults. Food Nutr Res. 2018 Jul 16;62. doi: 10.29219/fnr.v62.1353. PMID: 30038554; PMCID: PMC6052506.
  22. Vara Prasad SS, Jeya Kumar SS, Kumar PU, Qadri SS, Vajreswari A. Dietary fatty acid composition alters 11β-hydroxysteroid dehydrogenase type 1 gene expression in rat retroperitoneal white adipose tissue. Lipids Health Dis. 2010 Oct 8;9:111. doi: 10.1186/1476-511X-9-111. PMID: 20932307; PMCID: PMC2959202.
  23. Jing B, Chen W, Wang M, Mao X, Chen J, Yu X. Traditional Tibetan Ghee: Physicochemical Characteristics and Fatty Acid Composition. J Oleo Sci. 2019 Sep 4;68(9):827-835. doi: 10.5650/jos.ess19031. Epub 2019 Aug 14. PMID: 31413239.
  24. Mehta, Meena. “Consumption pattern and fatty acid composition of ghee.” Food Science Research Journal4 (2013): 116-120.
  25. Marcus J. Culinary nutrition: the science and practice of healthy cooking. 1a edición. Elseiver: Waltham, MA. USA. 2013.
  26. Gunstone, Frank, ed. Vegetable oils in food technology: composition, properties and uses. John Wiley & Sons, 2011.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
Abrir chat
1
Bienvenidos a IIDENUT
¿En qué puedo ayudarte?
AFÍLIATE