Nutrición clínica

, ,

Comunicado sobre informe periodístico del Programa Panorama

A nuestra comunidad institucional y a la opinión pública:

El día domingo 14 de febrero se emitió en el Programa Panorama de señal abierta un informe periodístico titulado “Los no vacunados” en el que se aborda el problema de los profesionales de la salud que hasta el momento no han sido vacunados.

En diferentes fragmentos del reportaje y con información insuficiente, se da a entender a la población que los Nutricionistas no deberían ser vacunados por no formar parte de la llamada “primera línea”

Sobre lo citado, debemos comentar lo siguiente:

  1. Las normas vigentes establecen que deben ser vacunados aquellos profesionales de la salud, sin importar el tipo de vínculo laboral, que se encuentren en contacto con pacientes que padecen COVID-19.
  2. Por otro lado, miles de nutricionistas en todo el Perú están en contacto directo con pacientes COVID-19 porque deben llevar a cabo procedimientos críticos relacionados con la evaluación, el diagnóstico y la implementación de la terapia nutricional que científicamente y mundialmente ha demostrado ser fundamental para la recuperación de estos pacientes.
  3. Cientos de profesionales de la salud: nutricionistas, médicos, enfermeras entre otros, desarrollan actualmente trabajo remoto por lo que su incorporación a las listas de vacunación deberá hacerse en el momento oportuno y deberá estar sujeta a criterios de priorización.
  4. En este contexto, debemos levantar nuestra voz de protesta por lo abiertamente peligroso de la información propalada por el programa periodístico Panorama. Informes como el citado, pueden crear un prejuicio injusto y desinformado sobre la labor del nutricionista en esta pandemia. La primera línea está al pie de la cama.

 

Link del programa: https://www.youtube.com/watch?app=desktop&v=BS7SuoDz2c8&feature=youtu.be

Dirección General

Instituto IIDENUT

Read More
,

Comunicado sobre la admisión de profesionales no nutricionistas a la Segunda Especialidad de Nutrición Clínica de la Escuela de posgrado de la Facultad de Bromatología y Nutrición de la Univeridad Nacional José Faustino Sánchez Carrión

A nuestra comunidad institucional y la opinión pública.

1. El 04 de diciembre de 2020, la Junta Directiva del Consejo Regional V del Colegio de Nutricionistas del Perú presidida por el Lic. Richard Ezequiel Torres Mejía en carta abierta dirigida al Rector de dicha casa de estudios, Dr. César Marcelino Mazuelos Cardoza, denunció que en el proceso de admisión al programa de Segunda Especialidad de Nutrición Clínica de esta casa de estudios habían sido admitidos profesionales no nutricionistas.

2. En este contexto, decidimos revisar el documento denominado “Plan de Estudios de Segunda Especialidad en Nutrición Clínica de la Escuela de Posgrado de la Facultad de Bromatología y Nutrición de la Universidad Nacional José Faustino Sánchez Carrión” que fundamenta la existencia de este programa y hemos detectado los siguientes desaciertos:

  • En la presentación se establece textualmente: “el programa de Segunda Especialidad en Nutrición Clínica dirigido a los profesionales de salud”.
  • En la justificación se establece textualmente: “Las unidades hospitalarias a nivel mundial deben estar conformados por personal especializado en todos sus niveles. Se exige que la dotación de personal de una Unidad de Nutrición y Dietética deba ser de médicos, bromatólogos, nutricionistas, dietistas, técnicos en Nutrición y el correspondiente personal administrativo”.
  • En el perfil de ingreso se establece textualmente: “Poseer título universitario de profesional en Nutrición o en área afín.” 

Sobre la información citada previamente, debemos comentar lo siguiente: 

Las maestrías y doctorados, a diferencia de las especialidades, sirven para generar conocimiento nuevo; nos proporcionan herramientas técnicas para que cualquier profesional sin importar su carrera pueda buscar y generar este conocimiento. Esta es la razón por la cual están abiertas a todos irrestrictamente para áreas específicas y afines. 

Las especialidades, por el contrario, sirven para perfeccionar competencias previamente adquiridas en pregrado, por eso, deben ser restrictivas. Un profesional de la nutrición no podría ni sería admitido en una especialidad de cirugía porque en nuestra formación no desarrollamos esa competencia. 

Los profesionales de nutrición somos formados durante 5 años para luego buscar la especialización en alguno de los 4 pilares básicos de nuestra carrera: la nutrición clínica, la nutrición de población, la nutrición deportiva y la gestión en nutrición. Si se admitiese a un profesional no nutricionista en la Segunda Especialidad en Nutrición Clínica ¿cómo podría perfeccionar algo que nunca recibió previamente? 

Es un error afirmar que las Unidades de Nutrición y Dietética deban estar integradas por un profesional médico. Esto aplica a las Unidades de Terapia Nutricional que por su naturaleza son interdisciplinarias e incluyen, ademas de profesionales de la nutrición, a otros profesionales de la salud.

Durante años, los profesionales de la nutrición hemos peleado en todos los ámbitos posibles contra el ejercicio ilegal de la carrera (eufemísticamente llamado intrusismo) por parte de profesionales no nutricionistas con absoluto desconocimiento del impacto que la nutrición puede tener sobre el metabolismo humano. Con la admisión de profesionales no nutricionistas a un programa de segunda especialidad en Nutrición Clínica se abrirá una ruta potencialmente peligrosa que servirá para avalar un trabajo que por lo descrito líneas arriba será ineficaz e ineficiente. 

Este hecho contribuirá a generar una práctica paralela que inevitablemente afectará el buen nombre y el desarrollo laboral de todos los profesionales de la Nutrición. No solo eso, estaremos frente a un argumento adicional para que los profesionales no nutricionistas puedan tomar las jefaturas de los servicios, unidades o departamentos de nutrición del país como ya viene sucediendo desde hace algunos años en nuestros países vecinos.

Exhortamos a las autoridades de la universidad a detener el proceso en cuestión y a la comunidad de nutrición estar atentos para que este hecho no prosiga; acciones como estas, pueden generar una peligrosa premisa para que otras casas de estudio evalúen seguir el mismo camino. 

 

Dirección general.

Read More
, ,

Conceptos clave sobre las proteínas

Las proteínas son, sin lugar a duda, el nutriente de la vida. Nada de lo que sucede en el organismo podría sustentarse en modo alguno sin la existencia de las proteínas. Piense en cualquier otro nutriente y trate de recordar cómo es extraído del alimento, la fórmula o el suplemento, cómo luego es distribuido, metabolizado, utilizado o eliminado del cuerpo y en cada uno de esos procesos encontrará una o varias proteínas haciendo posible cada etapa. Es verdad que no se puede vivir solo de proteínas, pero son pocos los nutrientes que están presentes en prácticamente todos los procesos que rigen la vida de las personas. A continuación, describiremos algunos conceptos clave para entenderlas mejor.

 

Que una molécula contenga o este formada por aminoácidos no la convierte necesariamente en una proteína. En la naturaleza existen centenas de compuestos formados por aminoácidos que, a pesar de ello, no alcanzan la categoría de proteína. Arbitrariamente, se ha considerado como proteína a aquellos compuestos integrados por 51 o más aminoácidos. Un ejemplo cotidiano lo constituye la proinsulina, una molécula de 101 aminoácidos que al romperse genera una proteína, la insulina de 51 aminoácidos y un péptido, el péptido C de 50 aminoácidos (1). Ahora bien, ser péptido no significa que este exento de funciones, por el contrario, prácticamente todos los péptidos presentan un comportamiento biológicamente activo que sirve para regular procesos orgánicos importantes como, por ejemplo, la carnitina (una amina cuarternaria) formada por lisina y metionina que es útil para el transporte de ácidos grasos de cadena larga del exterior al interior de las mitocondrias, o la gastrina un péptido de 32 aminoácidos que es a su vez es una hormona que estimula la producción de ácido clorhídrico a nivel gástrico (2).

 

La presencia de nitrógeno en un compuesto tampoco lo convierte en proteína. Es común que muchos de estos compuestos sean considerados erróneamente como proteínas. El ADN, por ejemplo, está compuesto por pares de nucleótidos y cada nucleótido está conformado a la vez por un azúcar, un grupo fosfato y una base (purina o pirimidina) (3); de los elementos citados, solo la base posee nitrógeno, pero su composición ni siquiera se parece a la de un aminoácido. Lo mismo sucede con otros compuestos nitrogenados como el ácido úrico que se obtiene de la metabolización endógena de estas bases nitrogenadas o de la creatinina que es el producto de desecho del metabolismo de la creatinina fosfato, una de las moléculas de reserva energética muscular o de la urea que es sintetizada a partir del residuo de nitrógeno que liberan los aminoácidos cuando son degradados; ninguno de estos compuestos alcanza para ser considerado proteína.

 

La calidad nutricional de la proteína no está circunscrita única y exclusivamente a su valor biológico (VB). El VB de una proteína depende de la cantidad y calidad de aminoácidos esenciales que esta proteína proporcione; una proteína de alto VB debe proporcionar todos los aminoácidos esenciales no solo en número sino en cantidad suficiente para cubrir los requerimientos máximos de un individuo promedio. Bajo esta premisa es posible encontrar proteínas de alto VB tanto de origen animal como de origen vegetal. No obstante, el tema no finaliza aquí porque no solo debe importarnos la presencia de aminoácidos esenciales sino cuántos de estos son realmente absorbidos. La digestibilidad proteica corregida por el score de aminoácidos (PDCAAS) es una medida que nos brinda esta información y ayuda a definir mejor la calidad de una proteína alimentaria. Tomemos como ejemplo a la proteína del grano de soya. Esta proteína tiene un alto VB pero un PDCAAS bajo debido a la presencia de cáscara y otros elementos que puede afectar su digestibilidad a nivel gastrointestinal, por lo tanto, a pesar de tener un VB alto, su PDCAAS solo la ubica en una categoría media en la escala de calidad, a diferencia de la albúmina del huevo que además de presentar un VB alto, también presenta PDCAAS elevado.

 

La proteína alimentaria no solo debe ser extraída también suele ser modificada cuando está destinada a usos especiales. La industria de fórmulas enterales, por ejemplo, debe purificar la proteína del grano de soya (retirar la cáscara y otros elementos) para mejorar su PDCAAS y, por tanto, su utilización biológica; cabe precisar que, aunque este proceso eleva significativamente el PDCAAS de la proteína del grano de soya y la convierte en una proteína de alta calidad nutricional, su aminograma nunca llega a parecerse por completo a aquel de la proteína de la leche de vaca (caseína) o de la clara de huevo (ovoalbúmina)(4). Por otro lado, la caseína presente en las fórmulas enterales también puede ser modificada para adaptarse a las condiciones de digestibilidad gastrointestinal en condiciones clínicas específicas. Cuando la actividad digestiva es plena, las fórmulas enterales contienen caseína en estado polimérico, es decir, prácticamente sin modificación alguna; cuando la actividad digestiva está parcialmente disminuida, las fórmulas enterales ya no contienen caseína íntegra, sino péptidos de caseína, es decir, moléculas más pequeñas que requieren un menor proceso de digestión; cuando la actividad digestiva está ausente, las fórmulas enterales contienen solo aminoácidos que serán absorbidos libremente (5). Otro ejemplo importante de modificaciones físicas a la caseína, lo encontramos en los productos destinados a la alimentación de lactantes. Desde el punto de vista nutricional, la leche humana es el alimento ideal e irremplazable para la alimentación del lactante y tiene una composición diametralmente diferente a aquella de la leche de vaca (tabla 1). La leche de vaca contiene 3 veces más proteína (este aporte elevado puede afectar la función renal del lactante y generar inflamación a nivel intestinal), el doble de caseína (proteína de difícil digestión para el lactante) y 3 a 4 veces menos nitrógeno libre (bajo la forma de nucléotidos esenciales para el neurodesarrollo del lactante). Por esta razón, organismos como el CODEX o la FDA vigilan que los procesos industriales modifiquen la composición de la a leche de vaca para que se asemeje a aquella de la leche humana cuando va a ser empleada en la preparación de productos destinados a lactantes. [Nota. Otras diferencias importantes de la leche de vaca en comparación con la leche humana son: 3 veces menos ácidos grasos poliinsaturados (esenciales para el neurodesarrollo), 10 veces menos oligosacáridos (importantes para la formación de la microbiota intestinal y el neurodesarrollo), de 2 a 4 veces más minerales (incrementa la carga renal de solutos) y de 2 a 3 veces menos vitaminas].

 

 

Tabla 1. Composición proteica de la leche humana en comparación con la leche de vaca.

Composición Leche Humana Leche de vaca
Proteínas (g/dl) 0,89-1,1 3,5
– Caseina (%) 40 82
– Proteínas del suero (%) 60 18
– Nitrógeno no proteico (% de N total) 15-25 6

 

 

La proteína no solo es un componente nutricional importante en las fórmulas destinadas para nutrición enteral, sino que además determina cuál será la estructura molecular de lípidos y de carbohidratos. La estructura molecular de la proteína presente en una formula enteral, sin importar el alimento del que fue extraída será: polimérica, peptídica o elemental. Esta diferencia no debe pasar desapercibida porque determinará el estado en el que encontraremos los demás macronutrientes y además puede determinar al valor final de la osmolaridad del producto. Si la proteína es polimérica, lípidos y carbohidratos podrán estar presentes bajo cualquier grado de complejidad, es decir, en la misma fórmula se pueden encontrar aceites, triglicéridos de cadena media, almidones, oligosacáridos o azúcares.  Si la proteína es péptidica, lípidos y carbohidratos no podrán estar presente bajo la forma polimérica, es decir, en la misma fórmula solo se pueden encontrar como triglicéridos de cadena media, oligosacáridos o azúcares. Finalmente, si la proteína está bajo la forma de aminoácidos, los lípidos y los carbohidratos solo deberán estar presentes en su forma molecular más básica.

 

La proteína no es un nutriente más de la lista, en la práctica todos los demás nutrientes trabajan para ella. Aunque metabólicamente hablando, la glucosa es el combustible principal del cuerpo y está al centro del metabolismo, tanto en personas aparentemente sanas como en enfermas, las proteínas son el nutriente que determina finalmente cuánto lípido y carbohidrato debemos consumir proporcionalmente.  Si consumimos más proteína, por ejemplo, se producirá un incremento en la síntesis de urea de desecho y esto demandará un mayor consumo de agua para poder eliminarla a través de la orina; el metabolismo de la proteína presenta el gasto energético más alto cuando se le compara con el gasto energético de metabolizar lípidos o carbohidratos, por lo cual, más aporte de proteína sin energía para que sea utilizada, es una práctica que garantiza un uso ineficiente de la proteina. En este orden de ideas y con todas sus limitaciones, herramientas como el balance nitrogenado siguen siendo empleadas para entender de alguna manera el dinamismo del nitrógeno en el cuerpo, lamentablemente, existen errores conceptuales que podrían llevarnos a interpretar erróneamente sus resultados. [Nota. Un balance nitrogenado positivo, no necesariamente indica que estemos formando tejido]. La relación entre el aporte de nitrógeno y el aporte de energía no proteica (a partir de lípidos y carbohidratos) es otra relación que, aunque cuestionada, sigue siendo útil y referencial para proporcionar un aporte de energía que permita que la proteína sea empleada racionalmente por el cuerpo.

 

En realidad, el tema “proteínas” es amplio, diverso, complejo y apasionante. La compresión promedio del este, todavía, está lejos de ser adecuada. Existen demasiados errores conceptuales alrededor de las proteínas. La cuantificación numérica y las guías de práctica no siempre tienen la respuesta a todas las preguntas, no obstante, existen y debemos analizarlas en el contexto apropiado. Un concepto final, mientras más entienda la dinámica de las proteínas estoy convencido que entenderá de mejor manera la dinámica de la vida.

 

 

 

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

 

 

Referencias Bibliográficas

  1. Weiss M, Steiner DF, Philipson LH. Insulin Biosynthesis, Secretion, Structure, and Structure-Activity Relationships. [Updated 2014 Feb 1]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279029/
  2. Prosapio JG, Sankar P, Jialal I. Physiology, Gastrin. [Updated 2020 Apr 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534822/
  3. National Human Research Instituto. Nucleotide. Visto en https://www.genome.gov/genetics-glossary/Nucleotide
  4. Savino P. Knowledge of Constituent Ingredients in Enteral Nutrition Formulas Can Make a Difference in Patient Response to Enteral Feeding Nutrition in Clinical Practice Volume 33 Number 1. February 2018 90–98
  5. Cámara-Martos F, Iturbide-Casas, M. Enteral Nutrition Formulas: Current Evidence and Nutritional Composition. Nutrients in Beverages. Volume 12: The Science of Beverages. 2019, Pages 467-508.
  6. Ballard, O, Morrow A. Human Milk Composition: Nutrients and Bioactive Factors. Pediatr Clin North Am. 2013 Feb; 60(1): 49–74.

 

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista.

Read More
,

Los ácidos siálicos son un tipo de carbohidrato de la leche humana fundamental para la vida

La ciencia de la nutrición está cargada de conocimiento que crece y crece; esto inevitablemente nos obliga a revisar, de manera permanente, la información disponible. Al referirnos a los carbohidratos, por ejemplo, pensamos con toda razón en compuestos formados por unidades llamadas sacáridos que, a la vez, contienen en su molécula 3, 4, 5 o 6 carbonos que sirven para clasificarlos en triosas, heptosas, pentosas y hexosas, respectivamente. Con esta misma lógica, es comprensible que en nuestras conversaciones profesionales no aparezcan con tanta regularidad nombres como gliceraldehido o hidroxiacetona de la familia de las triosas o ribosa de la familia de las pentosas debido a su pequeña concentración, pero no importancia menor; lo común y recurrente es referirnos a las hexosas más abundantes: fructuosa, glucosa y galactosa. No obstante, existe otro tipo de sacáridos tan importantes como los antes citados, pero al que rara vez nos referimos: los ácidos siálicos, sacáridos conformados por 9 carbonos cuya importancia para la vida es significativamente alta y su concentración es particularmente alta en la membrana del glóbulo de grasa de la leche humana.

Las primeras referencias disponibles relacionadas con la existencia de estos compuestos se encuentran en descripciones de la composición molecular de la saliva y el cerebro. Originariamente, solo se hablaba del ácido siálico como un compuesto único; sin embargo, en la medida que se dispuso de mejores métodos de análisis, se pudo determinar que el ácido siálico no era un compuesto único, sino una familia de compuestos.

 

DEFINICIÓN

Los ácidos siálicos son una familia de monosacáridos de 9 carbonos (la glucosa y la fructuosa son monosacáridos de solo 6 carbonos) que poseen un grupo funcional “ceto” que les proporciona acidez y carga negativa. El ácido N-acetilneuramínico (Neu5Ac) y el ácido N-glicolilneuroamínico (Neu5Gc) son los ácidos siálicos más abundantes en la naturaleza.

Estos monosacáridos son los constituyentes principales de diferentes oligosacáridos (compuestos formados por 3 a 9 sacáridos), glucoproteínas (moléculas formadas por sacáridos y proteínas) y glucolípidos (moléculas formadas por sacáridos y ácidos grasos), especialmente aquellos que se encuentran en las membranas celulares (glucolípidos y glucoproteínas) y en los productos secretados por diversas células como, por ejemplo, las mucinas (glucoproteínas) y los oligosacáridos de la leche.

 

BIOSÍNTESIS

El hígado es el principal productor de ácidos siálicos. Los mamíferos tienen la capacidad de sintetizar Neu5Ac y Neu5Gc; mientras que los seres humanos solo podemos sintetizar Neu5Ac debido a una falla genética que nos dejó sin la enzima clave para la síntesis endógena de Neu5Gc.

Las plantas no sintetizan ácidos siálicos.

 

DESTINO DEL ÁCIDO SIÁLICO DIETARIO

A pesar de todo lo que se ha avanzado en la caracterización de estos compuestos, todavía existen muchos aspectos que no han sido esclarecidos adecuadamente.

La leche humana es la principal fuente natural de ácidos siálicos; la leche de vaca también posee una cantidad interesante de ácidos siálicos, pero significativamente menor a aquella de la leche humana. Otras fuentes alimentarias de ácidos siálicos pueden incluir las vísceras y sobre todo el hígado que es el órgano encargado de la síntesis endógena en los mamíferos. Bajo condiciones normales la aparición de carbohidratos en una carne serviría para calificarla como adulterada; no obstante, aunque los ácidos siálicos son carbohidratos no forman almidón ni glucógeno, por el contrario, son parte de moléculas estructurales complejas.

Estudios llevados a cabo en lactantes demuestran que el ácido siálico, tanto libre como unido a la lactosa, se absorbe muy bien a nivel intestinal y su destino principal es el cerebro. Estudios, llevados a cabo en ratas, muestran que los síntomas de depleción de ácidos siálicos (valorado a través de la medición de su concentración en la saliva) fueron revertidos significativamente a partir de una dieta suplementada con este nutriente; se demostró, además, que las tasas de absorción son mejores durante los primeros años de vida aparentemente porque su destino primordial es el cerebro y que durante la vejez de los animales, la suplementación con ácidos siálicos redujo de manera significativa los deterioros propios de la edad como la xerostomía y algunos patrones cognitivos.

 

ÁCIDOS SIÁLICOS EN DIFERENTES ÁREAS DE LA SALUD

El estudio del papel de los ácidos siálicos en la salud de las personas tiene todavía una frontera muy amplia por explorar. La neurociencia, neurología, fisiología, farmacología, fertilización, medicina pulmonar, gastroenterología, nefrología son áreas donde el avance de la investigación ha sido muy grande, no obstante, también se está avanzando en hepatología, oncología, infectología y otras más.

 

Neurociencia y neurología. El cerebro es el órgano con la más alta concentración de ácido siálico en el cuerpo y forma parte de un conjunto de glucoproteínas sializadas denominadas gangliósidos. La formación de cadenas de ácidos polisiálicos es fundamental para la germinación y plasticidad neuronal. No solo eso, el hecho que las glucoproteínas asociadas a la mielina reconozcan a los gangliósidos también juega un rol importante en la estabilidad de la mielina y en la inhibición del daño neuronal.

La posibilidad de llevar a cabo estudios en lactantes que fallecieron por muerte súbita, una condición cuya causa se desconoce hasta el día de hoy y no involucra la presencia de una patología previa, pudo mostrar una relación importante entre el ácido siálico dietario y su participación en el neurodesarrollo del niño. Estos estudios mostraron concentraciones significativamente altas de este componente en el cerebro de los niños y esta concentración mantenía relación directa con el aporte a partir de la leche de la madre e incluso productos suplementados lo que demuestra la alta incorporación cerebral del ácido siálico dietario.

 

Fisiología. La carga negativa de los ácidos siálicos hace que las membranas celulares donde están presentes repelan a otras membranas con lo cual se evita la asociación de células; por ejemplo, evita que dos glóbulos rojos se unan en la sangre.

 

Farmacología. En esta área se presentan dos problemas: i) Muchos medicamentos son glucoproteinas (anticuerpos, citoquinas y hormonas); cuando no tienen suficiente ácidos siálicos con carga negativa repelente, son metabolizados con rapidez; y, ii) muchos de estos medicamentos son obtenidos a partir de cultivos celulares que se pueden contaminar con Neu5Gc (no lo producimos) y el cuerpo tiene anticuerpos para este tipo de ácido siálico por lo que son destruidos rápidamente.

 

Fertilización y desarrollo. Los ácidos siálicos son importantes para la embriogénesis y aunque no se conoce el mecanismo exacto, la ausencia de estos azúcares puede llevar  a la muerte del embrión.

 

Medicina pulmonar. Los ácidos siálicos son expresados fuertemente a lo largo de todo el epitelio y son responsables de las características reológicas (viscosidad) del moco en las vías aéreas. Estas características no solo permiten la lubricación sino que, además, el moco actúa como red que atrapa sustancias y organismos exógenos.

 

Más allá de todo lo que está pendiente en relación a la investigación en torno a los ácidos siálicos; es claro que cumplen un rol superlativo en el desarrollo del cerebro sobre todo en los primeros años de vida. Aunque no se han establecido recomendaciones sobre su ingesta dietética está claro que su deficiencia puede generar serias alteraciones a nivel orgánico.

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

 

Referencias Bibliográficas

  1. Schauer R. Sialic acids as link to Japanese scientists. Jpn. Acad, Ser. B92 (2016)
  2. Varki A. Sialic acids in human health and disease. Trends Mol. Med. 2008 August; 14(8): 351-360
  3. Schnaar RL. Glycolipid-mediated cell–cell recognition in inflammation and nerve regeneration. Arch. Biochem. Biophys 2004;426:163–172. [PubMed: 15158667]
  4. Pan B, et al. Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp. Neurol 2005;195:208–217. [PubMed: 15953602]
  5. Weigel PH, Yik JH. Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochim. Acta 2002;1572:341–363. [PubMed: 12223279]

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

Read More
,

Confinamiento en niños, neurodesarrollo y DHA

La pandemia por COVID-19 ha generado cambios significativos y, en muchos casos, permanentes en nuestro estilo de vida. Durante los últimos 6 meses, hemos prestado merecida atención y esfuerzos para desarrollar estrategias que, desde el ámbito nutricional, sirvan para atenuar la gravedad de la infección en personas con mayor riesgo de hacer cuadros severos de COVID-19 como por ejemplo individuos con sobrepeso-obesidad o adultos mayores. En la actualidad, no existe comunicación científica disponible que cuestione el confinamiento y la cuarentena rígida que el mundo adoptó desde el mes de marzo y, a pesar del número de muertos y contagios, parece ser que fue una decisión acertada. Sin embargo, en un contexto tan dramático, donde más allá de las dificultades, parece ser que hemos protegido apropiadamente a todos aquellos que debíamos proteger, pero hemos perdido de vista un grupo etario particularmente vulnerable, no por la infección misma, sino por las condiciones de vida de esta “nueva normalidad”.

El cautiverio y el cierre de las escuelas son factores asociados con la cuarentena que tendrán un impacto marcado sobre la salud mental de los niños y aunque todavía es difícil pronosticar la magnitud del mismo, este impacto existirá. Incluso para los más pequeñitos de la casa, la interacción con otros niños en el ámbito escolar, u otro de aprestamiento pre-escolar, estimula su desarrollo neurológico y cognitivo. La alteración de los patrones de sueño, el uso de pantallas en general (celular, tableta, computadora, televisor), el miedo a infectarse o a infectar a los abuelos, el aburrimiento eterno, la frustración, la falta de espacio personal en una casa invadida por el home office y el solo hecho de no interactuar con otros niños de la misma edad son factores a tener en cuenta para entender el impacto sobre la salud mental infantil en esta “nueva normalidad” (1) [Nota. El estudio ABC que sigue a más de 11 mil niños de 9 y 10 años de 21 lugares de los Estados Unidos de Norteamérica ha mostrado como resultados preliminares que los niños que pasan más de 7 horas al día frente a un teléfono, tableta o computadora muestran un envejecimiento prematuro en ciertos sectores clave de su corteza cerebral (2)].  Los niños, dependiendo de la edad, presentan diferentes maneras de mostrar sus preocupaciones y su reacción a situaciones estresantes, como la cuarentena; mientras que, los más pequeños pueden apegarse más a los padres o retroceder en sus comportamientos, los más grandes pueden volverse más ansiosos, enojados y retraídos, comportamientos que a opinión de los padres pueden ser vistos como desafiantes (3).

El desarrollo del comportamiento en los niños involucra relaciones dinámicas entre procesos guiados genéticamente por las estructuras neuronales y su interacción con el medio ambiente. Por mucho tiempo se pensó, que después del desarrollo vertiginoso que se llevaba a cabo en el cerebro durante el primer y segundo año de vida postnatal, el proceso declinaba y terminaba a los 6 años con un cerebro maduro, similar a aquel de los adultos. No obstante, el empleo de neuroimágenes ha permitido demostrar que el cerebro sigue desarrollando de manera significativa hasta la adolescencia. La información actualmente disponible ha permitido romper el dogma que sostenía que la estructura del cerebro permanecía constante durante la infancia y ha demostrado que los cambios en este periodo de vida son, al menos, tan dramáticos (para bien?) como los que enfrentamos durante el final de la vida (4). En este sentido, se ha sugerido que los cambios en la morfología cortical son relevantes para el desarrollo cognitivo y las diferencias en el comportamiento de los niños están fuertemente influenciadas por el curso de su neurodesarrollo. De alguna manera, los cambios en su comportamiento nos podrían estar mostrando señales indirectas de algún grado de alteración en sus estructuras más internas.

Desde el punto de vista nutricional, las membranas cerebrales están compuestas principalmente por los ácidos grasos araquidónico (AA) y docosahexaenoico (DHA). Los estudios en animales muestran que las células cerebrales responden mejor al aporte dietario de DHA que de AA; un aporte dietario incrementado de ácido graso linolénico (ALA) se ve directamente reflejado en la composición de las membranas, mientras que el incremento del aporte de ácido graso linoleico (LA) tiene muy poco impacto sobre las mismas. Por ejemplo, en caso de una deficiencia dietaria de ácidos grasos omega 3, existe una tendencia muy fuerte a reemplazar el DHA por el omega 6 más cercano, mientras que, si faltase omega 6, casi no se aprecian cambios en la composición del cerebro. La incorporación de DHA en los diferentes tejidos parece ser dependiente del contenido de la dieta y solo una pequeña proporción provendría de la conversión endógena de ALA en DHA.

Aunque los mecanismos no están del todo claros, el consumo de DHA podría presentar marcados efectos neuro protectores durante toda la infancia. Un estudio aleatorizado, placebo controlado y doble ciego llevado a cabo en niños saludables de 4 años, suplementados con 400 mg/d de DHA por 4 meses, mostró una fuerte asociación positiva entre los niveles plasmáticos de DHA y los resultados de las pruebas de comprensión de lectura y adquisición de vocabulario (5).

La investigación disponible sugiere que un consumo de entre 120-800 mg por día de DHA+EPA para niños en función de la edad, podría tener un efecto protector sobre el neurodesarrollo. El pescado es, en este contexto, la principal fuente alimentaria de DHA; no obstante, su contenido puede variar significativamente de una especie a otra (tabla 1). Los pescados de color oscuro proporcionan un mayor aporte de DHA por cada cien gramos de pulpa, que aquel de los pescados blancos. Lamentablemente, los pescados no solo proporcionan DHA, también aportan una cantidad importante de proteína. Obtener la recomendación sugerida implicaría un consumo elevado de proteína paralelo a aquel de DHA+EPA, lo cual y sobre todo en niños menores pequeños podría generar desbalances nutricionales importantes.

Dada la coyuntura actual es necesario tomar medidas de prevención para los eventos del presente y del futuro. Los niños han sido los menos atendidos en estos días. El confinamiento ha sido visto por los padres como un premio para los niños y las manifestaciones de estrés de estos últimos como cambios más cercanos a una pataleta que un evento que amerita mayor atención. Las alertas sobre posibles problemas futuros de salud mental tanto en niños como en adultos son cada día mayores y más serias; preocupa particularmente el impacto que tendrá sobre los niños que desarrollaron cuadros de COVID-19 que los llevaron al aislamiento dentro de un hospital o a la pérdida del papá o la mamá. Las medidas preventivas nunca serán innecesarias y aunque el pescado es la fuente alimentaria natural para cubrir estas necesidades adicionales, la suplementación a través de diferentes aceites o alimentos enriquecidos es una alternativa igualmente viable que debería ser puesta en marcha rápidamente.

 

Tabla 1. Composición nutricional de ácidos grasos de algunos de los pescados más consumidos en Perú.

 

Pescados Proteína

(%)

Grasa (g%) Ag. Linoleico (mg) EPA (mg) DHA

(mg)

Bonito (músculo oscuro) 20.30 0.9 ND 261.42 464.11
Caballa 18.10 1.50 ND 103.75 343.01
Cachema 16.44 0.78 38.91 33.70 83.82
Jurel 20.54 0.83 38.63 68.65 212.15
Perico 17.79 0.42 ND 17.20 148.92
Lisa 18.31 1.05 31.05 148.64 158.90

Fuente: Salas A, Aranda D, Castro C, Albrecht M, Solari A, Arpi E. Información nutricional sobre algunas especies comerciales del Mar Peruano. Instituto Tecnológico Pesquero del Perú. Volumen 10. Enero-Diciembre 2012.

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

Referencias Bibliográficas

  1. Ghosh R, Dubey M, Chatterjee S, Dubey S. Impact of COVID-19 on children: special focus on the psychosocial aspect. Minerva Pediatrica 2020 June;72(3):226-35. DOI: 10.23736/S0026-4946.20.05887-9.
  2. Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco DV, Garavan H, Orr CA, Wager TD, Banich MT, Speer NK, Sutherland MT, Riedel MC, Dick AS, Bjork JM, Thomas KM, Chaarani B, Mejia MH, Hagler DJ Jr, Daniela Cornejo M, Sicat CS, Harms MP, Dosenbach NUF, Rosenberg M, Earl E, Bartsch H, Watts R, Polimeni JR, Kuperman JM, Fair DA, Dale AM; ABCD Imaging Acquisition Workgroup. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev Cogn Neurosci. 2018 Aug;32:43-54. doi: 10.1016/j.dcn.2018.03.001. Epub 2018 Mar 14. PMID: 29567376; PMCID: PMC5999559
  3. Imran N, Aamer I, Sharif MI, Bodla ZH, Naveed S. Psychological burden of quarantine in children and adolescents: A rapid systematic review and proposed solutions. Pak J Med Sci. 2020 Jul-Aug;36(5):1106-1116. doi: 10.12669/pjms.36.5.3088. PMID: 32704298; PMCID: PMC7372688.
  4. Jernigan TL, Baaré WF, Stiles J, Madsen KS. Postnatal brain development: structural imaging of dynamic neurodevelopmental processes. Prog Brain Res. 2011;189:77-92. doi: 10.1016/B978-0-444-53884-0.00019-1. PMID: 21489384; PMCID: PMC3690327.
  5. González Francisca Echeverría, Báez Rodrigo Valenzuela. IN TIME: IMPORTANCE OF OMEGA 3 IN CHILDREN’S NUTRITION. Rev. paul. pediatr.  [Internet]. 2017 Mar [cited 2020 Oct 06]; 35(1): 3-4. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-05822017000100003&lng=en.  https://doi.org/10.1590/1984-0462/;2017;35;1;00018.
  6. Salas A, Aranda D, Castro C, Albrecht M, Solari A, Arpi E. Información nutricional sobre algunas especies comerciales del Mar Peruano. Instituto Tecnológico Pesquero del Perú. Volumen 10. Enero-Diciembre 2012

 

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista.

Read More
, ,

Menores de un año no deben consumir leche, queso ni yogurt

La leche entera de vaca (LEV) es un alimento tradicional en la canasta básica del poblador peruano. Desde hace más de 20 años, existen amplias descripciones sobre el papel preponderante de la caseína (una de las fracciones proteicas de la LEV) en el desarrollo de micro sangrados a nivel intestinal y su contribución causal al desarrollado de anemia en el recién nacido. A continuación, describiremos las razones.

 

  1. a) La LEV contiene mucha más caseína que la leche humana.

Tanto la leche humana como la LEV están compuestas por dos grupos diferentes de proteínas: proteínas del suero y fracciones de caseína.  La ratio de suero – caseína en la leche humana puede pasar de 9 a 1, es decir, 90% proteínas del suero y solo 10% caseína durante la primera semana de lactancia hasta estabilizarse en una ratio de 6 a 4 a partir de la tercera semana de lactancia; la LEV, por otro lado, presenta un ratio de 2 a 8; lo que significa que solo presenta un 20% de sus proteínas, bajo la forma de proteínas de suero (tabla 1) y el 80% restante es caseína.

 

Tabla 1. Fracciones proteicas de la leche humana en comparación con la de vaca.

Proteína Leche humana (g/dl) Leche entera de vaca (g/dl)
     
Caseínas 40% 80%
Alfa caseína ND 12.6
Beta caseína 2.0 9.3
Kapa caseína 0.8 3.3
     
Proteinas del suero 60% 20%
Alfa lactoalbúmina 2.8 1.2
Beta lactoglobulina 0.0 3.2
Lactoferrina 2.0 0.1
Lisozima 0.4 0.0
Albúmina del suero 0.6 0.4
Inmunoglobulinas 1.0 0.7

Fuente: Modificado de referencia 5

  1. b) LA LEV contiene macromoléculas de caseína mucho más grandes que aquellas de la leche humana

Aunque los pesos moleculares de las tres fracciones más importantes de la LEV (alfa, beta y kappa) son de tamaño mediano 23500 D, 24000 D y 19000 D, respectivamente, estas pueden asociarse y formar micelas que pueden llegar a tener pesos moleculares superiores a los 600 000 D (tabla 2), algo que no sucede en la leche humana. Las proteínas del suero, por otro lado, son proteínas que se encuentran en solución. Algunas de ellas pueden presentar pesos moleculares altos como es el caso de la lactoferrina (94 000 D) o la seroalbúmina (65 000 D), pero no forman macro compuestos como si lo hacen las caseínas. En general, las proteínas del suero presentan pesos moleculares muy bajos como la alfalactoglobulina (14 000 D) (tabla 2).

 

Tabla 2. Pesos moleculares de las diferentes fracciones proteicas de la leche

Proteína Leche humana (g/dl) Leche entera de vaca (g/dl) Peso molecular (peso por molécula)
       
Caseínas    
Alfa caseína ND 12.6 23 500 D
Beta caseína 2.0 9.3 24 000 D
Kapa caseína 0.8 3.3 19 000 D
Proteínas del suero      
Alfa lactoalbúmina 2.8 1.2 14 000 D
Beta lactoglobulina 0.0 3.2 18 000 D
Lactoferrina 2.0 0.1 94 000 D
Lysozima 0.4 0.0
Albúmina del suero 0.6 0.4 65 000 D
Inmunoglobulinas 1.0 0.7 100 000 – 400 000 D

Fuente: Modificado de referencia 7

 

  1. c) El tamaño tan grande de la caseína de la leche presente en la LEV puede provocar micro sangrados a nivel del intestino del lactante

 

En 1992, el Comité de Nutrición de la Academia Americana de Pediatría (AAP-NC) basado en las investigaciones clásicas de Fomon et al, Ziegler et al y otros reconocidos pediatras recomendaron que la LEV no debería ser introducida en la alimentación del niño antes del año de nacimiento. Fommon y Ziegler habían demostrado previamente que el consumo de LEV antes del año producía pérdidas intestinales de sangre hasta un 30% mayores que aquellas fisiológicas de los niños que no recibieron LEV; también se había demostrado y confirmado luego que este evento podía afectar al 46% de los niños alimentados con LEV.

 

  1. d) Los lactantes peruanos son particularmente sensibles a este problema

 

Las reservas neonatales de hierro se consolidan, recién, en las últimas 8 semanas de gestación; aproximadamente entre el 60 y 80% (8,9) de las reservas totales del recién nacido se habrán conseguido en este periodo de tiempo a costa de los almacenes maternos en un proceso denominado biotransferencia. El faltante de hierro se obtiene a partir de la destrucción fisiológica de glóbulos rojos que se producen en las primeras semanas de vida del niño (9).

 

Lamentablemente, en el Perú existe una alta prevalencia de anemia por deficiencia de hierro en mujeres gestantes y se ha demostrado ampliamente que el estado nutricional de hierro del feto y el recién nacido están fuertemente asociados con el estado nutricional del hierro de la madre; es posible inferir que al menos 1 de cada 3 niños nacidos en el Perú, podría padecer de anemia por deficiencia de hierro a causa de la deficiencia previa de su madre.

 

 

Conclusión

 

La sensibilidad intestinal hacia la caseína de la LEV, el yogurt y el queso (los tres alimentos poseen el mismo tipo de proteínas)  va desapareciendo conforme el intestino del niño va madurando, por lo cual, existe consenso en relación a que este alimento debería ser introducido en la alimentación del niño después del primer año de vida e incluso mucho después.

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

 

Referencias Bibliográficas

  1. Ministerio de Salud. Perú: Indicadores de Resultados de los programas presupuestales del Primer Semestre 2018. Encuesta Demográfica y de Salud Familiar (Resultados preliminares al 50% de la muestra).
  2. Ministerio de Salud. Perú: Indicadores de Resultados de los programas presupuestales del Primer Semestre 2017. Encuesta Demográfica y de Salud Familiar (Resultados preliminares al 50% de la muestra).
  3. Milman Nils. Fisiopatología e impacto de la deficiencia de hierro y la anemia en las mujeres gestantes y en los recién nacidos/infantes. Rev. peru. ginecol. obstet.  [Internet]. 2012  [citado  2019  Feb  07] ;  58( 4 ): 293-312. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2304-51322012000400009&lng=es.
  4. Shellhorn C, Valdés V. Manual de Lactancia para Profesionales de la Salud. Comisión de Lactancia MINSAL, UNICEF. Ministerio de Salud, UNICEF, Chile 1995.
  5. Herrera R [Tesis maestria]. Identificación y caracterización de la Beta caseina en la leche y fórmulas lácteas. Universidad Veracruzana. 2004

Angulo a, joaquín; mahecha l, liliana and olivera a, martha. síntesis, composición y modificación de la grasa de la leche bovina: Un nutriente valioso para la salud humana. Rev.MVZ Cordoba [online]. 2009, vol.14, n.3 [cited 2017-10-18], pp.1856-1866. Available from: . ISSN 0122-0268

  1. Alvarado C. Posibilidad de maximizar el contenido de proteína de la leche vía alimentación. Universidad Austral de Chile. Recítela V4 N1. 2004.
  2. Coeto Barona Georgina C., Rosenfeld Mann Fany, Trueba Gómez Rocío, Bouchán Valencia Patricia, Baptista González Héctor A.. Evaluación del estado en la reserva neonatal de hierro y las mutaciones del gen HFE. Bol. Med. Hosp. Infant. Mex.  [revista en la Internet]. 2014  Jun [citado  2019  Feb  08] ;  71( 3 ): 148-153. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-11462014000300004&lng=es.
  3. Pérez B, Lorente A, Gonzalez C, Malillos P, Miranda C, Salcedo E. Nutrición infantil. Guía de Actuación conjunta pediatría Primaria – Especializada, 2011. España.
  4. The use of whole cow´s milk in Infancy. Pediatrics 199;89;1105. Visto en: http://pediatrics.aappublications.org/content/89/6/1105
  5. Fomon Sj, Siegle EE, Nelson SE, et al. Cow milk feeding in infancy: gastrointestinal blood los and iron nutrition estatus. J Pediatr. 1981;98:540-545
  6. Ziegler EE, Fomon SJ, Nelson SE et al. Cow milk feedin in infancy: futher observations on blood loss from the gastrointestinal tract. J Peidatr. 1990;116:11-18.
  7. Guillén S, Vela M. Desventajas de la introducción de la leche de vaca en el primer año de vida. Acta Pediatr Mex 2010;31(3):123-128
  8. Ziegler EE. Consumption of cow’s milk as a cause of iron deficiency in infants and toddlers. Nutr Rev.2011 Nov;69 Suppl 1:S37-42
  9. Cruz R. Fundamentos de la Nutriología Pediátrica. 1ª edición. Lima. 2010.

 

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

 

Read More
, ,

COVID-19, zinc y sistema inmune

Después del hierro, el zinc es el segundo oligoelemento más abundante del mundo: su deficiencia fue identificada recién hace 50 años; es componente estructural y funcional de gran cantidad de proteínas, entre las que se pueden señalar alrededor de 750 factores de transcripción con dedo de zinc (proteína que forma una especie de dedo cuando sus aminoácidos se unen empleando un átomo de zinc); componente catalítico de más de 2 mil enzimas (1); y, por supuesto, elemento crucial en el funcionamiento del sistema inmune.     

 

La prevalencia de deficiencia de zinc puede variar de 4% a 70%, afectando principalmente a países con escasos recursos económicos (curiosamente, las tasas de prevalencia de deficiencia de zinc suelen ser muy parecidas a las tasas de prevalencia de deficiencia de hierro). Esta variabilidad tan alta en las tasas de prevalencia se debe entre otras razones a lo difícil que es identificar las deficiencias leves y moderadas; el zinc no posee un sistema especializado para el almacenamiento orgánico: el 30-45% se encuentra en el núcleo celular, 50% en el citoplasma y otras organelas, 5% en la membrana celular y solo 0.1% se encuentra en el plasma y es responsable de la señalización celular (80% de esta pequeña proporción viaja unida a la albúmina) (2). 

 

La homeostasis del zinc es fundamental para un correcto funcionamiento del sistema inmune, la deficiencia de zinc es tan negativa para la respuesta inmune como el exceso del mineral. El zinc es necesario para el correcto funcionamiento tanto de las células que conforman la inmunidad innata como la específica (tabla 1). Una reciente revisión ha descrito experimentos in vitro en los cuales el zinc ha demostrado tener actividad antiviral al inhibir la SARS-COV ARN polimerasa algo que podría servir para delinear el efecto de la cloroquina; también muestra evidencia indirecta de que el zinc puede disminuir la actividad de la enzima convertidora de angiotensina 2 (ACE2) receptor conocido del virus (3); finalmente, su papel regulador de la inflamación le otorga a este mineral, un papel protector, preventivo y adyuvante en la terapia de COVID-19 a través de la reducción de la inflamación, mejorando el clearance mucoso y previniendo el daño pulmonar producido por el ventilador.

 

Tabla 1. 

Función del zinc en las diferentes células inmunes

 

Célula inmune Función del zinc
Neutrófilos Estimula la carga oxidativa y la netosis
Monocitos/macrófagos Diferenciación de monocitos en macrófagos y estimula la síntesis de citoquinas por los monocitos
Mastocitos Estimula la degranulación
Natural killers Incrementa su número y su síntesis de interferón gamma
Células dendríticas Regula su maduración y función
Linfocitos T helper CD4 (Th)
– Th1 Secreción de interferón gamma e interleucina 2 
– Th2 Promueve la liberación de anticuerpos por los linfocitos B
– Th17 Promueve el reclutamiento de macrófagos
Linfocitos T reguladores (Treg) Reducen la formación de interferón gamma
Linfocitos B Reducción en la producción de inmunoglobulinas

 

En este contexto, la Sociedad Internacional de Inmunonutrición (ISIN) sugiere una suplementación de entre 30 mg – 220 mg por día (4); sin embargo, conviene hacer algunas precisiones: a) la absorción de zinc a partir de los alimentos es mejor cuando se trata de productos de origen animal porque la presencia de fitatos, propios de productos de origen vegetal, reduce significativamente la absorción del mineral, cuya concentración es normalmente baja en los mismos (tabla 2) (5); b) la recomendación de ingesta dietética (DRI) de zinc para un adulto está entre 8 mg – 11mg por día (6) por lo que aquello sugerido por ISIN corresponde a cantidades obtenidas a partir de suplementación; c) el nivel de ingesta superior tolerable (UL) no debería ser superior a 40 mg por día porque cantidades superiores pueden afectar negativamente la absorción de cobre lo cual sugiere que la suplementación no debería ser sostenida por un tiempo indefinido. 

 

Tabla 2

Recomendación de ingesta nutricional

 

 Alimento mg%
Corazón de pollo 6.59
Hígado de cerdo 6.20
Hígado de carnero 4.66
Res carne pulpa 4.32
Hígado de res 4.00
Queso parmesano 2.35
Yema de huevo 2.30
Soja 4.4
Lentejas 4.78
Avena hojuela 3.97

Fuente: Tabla peruana de composición de alimentos.

 

Si quieres saber más sobre nutrición clínica, te invito a estudiar con nosotros. Más información en el siguiente link: 
https://iidenut.org/cursos/diplomado/index.html 

 

Si quieres unirte a nuestro grupo en Facebook, ingresa aquí:

https://www.facebook.com/groups/ASOCIADOSIIDENUT/

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

Referencias bibliográficas

  1. Read S, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019;0:1–15; doi: https://doi.org/10.1093/advances/nmz013.
  2. Gammong N, Rink L. Zinc and inmune system. En Mahmoudi M, Rezaei N (eds.), Nutrition and Immunity. © Springer Nature Switzerland AG 2019.  https://doi.org/10.1007/978-3-030-16073-9_1
  3. Skalny A, Rink L, Ajsuvakova O, Aschner M, Gritsenko V, Alekseenko S, Svistunov A. et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). International journal of molecular medicine. April 13, 2020. DOI: 10.3892/ijmm.2020.4575
  4. Harbige L, Calder P, Marcos A, Dardenne M, Perdigón G, Perez-Cano F, Savino W, Slobodianik N, Solano L, Valdes R. ISIN position statement on nutrition, inmunity and COVID-19. International Society for Immunonutrition (ISIN). Board members (March 2020). 
  5. Ministerio de Salud. Centro Nacional de Alimentación y Nutrición. Tabla peruana de composición de alimentos. 2017.
  6. Dietary Reference Intakes (DRI) for Energy, Carbohydrate, Fiber, Fat, Fatty acids, Cholesterol, Protein, and Aminoacids. Food And Nutrition Board. Institute of Medicine of the National Academies. 2005.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista.

 

Read More

Protocolo estandarizado de evaluación nutricional

La evaluación del estado nutricional es una actividad inherente al profesional de la nutrición (nutricionista o nutriólogo dependiendo de la denominación del país). Su ejecución prolija y bien estructurada brinda información vital de cara a la implementación de estrategias de cuidado o tratamiento nutricional según se trate de un sujeto aparentemente sano o enfermo, respectivamente. Sin embargo y a pesar de su importancia todavía falta mucho trabajo de por medio para poder afirmar que todos los profesionales de la nutrición emplean los mismos procedimientos básicos. 

 

Según el Consenso 3: Procedimientos Clínicos para la Evaluación Nutricional
(1) del Comité Internacional para la Elaboración de Consensos y Estandarización en Nutriología (CIENUT), la evaluación nutricional consta de 9 pasos (los 6 primeros de cumplimiento obligatorio en cualquier situación clínica) citados a continuación:

 

  • Paso 1. Evaluación de la interacción entre nutrientes y fármaco
  • Paso 2. Evaluación de la ingesta alimentaria y de los factores que pueden afectarla
  • Paso 3. Evaluación de la actividad física
  • Paso 4. Evaluación de signos clínicos de deficiencias y excesos nutricionales
  • Paso 5. Evaluación del crecimiento y/o la composición corporal
  • Paso 6. Evaluación de la bioquímica nutricional
  • Paso 7. Evaluación de la reserva visceral
  • Paso 8. Evaluación del componente inmunológico
  • Paso 9. Evaluación del componente catabólico

 

Ahora bien, ¿qué debería motivarnos a estandarizar nuestra práctica? Aquí algunas razones. 

 

El estado nutricional de una persona es el resultado del equilibrio que debe existir entre cientos de factores; es prácticamente imposible construir una conclusión sobre el mismo contando solamente con la información que proporciona el IMC, algún otro índice antropométrico o la historia de consumo alimentario. Se ha demostrado, por ejemplo, que una persona con índices antropométricos en valores normales e incluso con una dieta relativamente adecuada puede presentar deficiencias nutricionales de micronutrientes ocasionadas por interacciones con medicamentos y/o suplementos nutricionales. 

 

En el pasado, la falta de consenso sobre cuáles son los elementos a tomar en cuenta como parte de la evaluación nutricional de una persona ha motivado que cada nutricionista/nutriólogo emplee uno u otro parámetro en función de su nivel de conocimiento, experiencia previa o recursos económicos; este evento ha hecho que no podamos pelear gremialmente por tiempo mínimo de atención por paciente (la propuesta es de 45 minutos), por equipamiento básico mínimo o estandarizar desde la academia las competencias profesionales básicas. Felizmente, cada vez son más los colegas que abiertamente sostienen que el índice de masa corporal (IMC) es solo una herramienta de tamizaje y que sus resultados no representan nada más que la relación entre el peso y la talla; hace solo 5 años, era algo inconcebible para muchos. No obstante, dejemos el IMC en su lugar porque sigue siendo útil para diversos procesos.

 

En términos muy básicos, el estado nutricional puede ser definido como el balance que existe entre la energía y nutrientes (proteínas, lípidos, carbohidratos, vitaminas y minerales) que una persona consume y gasta diariamente. Los 9 pasos permiten recolectar información directa e indirecta de prácticamente todos estos elementos sin dejar escapar ninguno; por ejemplo, permite determinar el balance de energía, cuando averiguamos el consumo y lo comparamos con la ingesta; permite calcular el balance de proteína cuando contrastamos la reserva proteica corporal (empleando impedancia) o visceral (empleando albúminemia) con la ingesta; permite identificar si un medicamento está generando deficiencias nutricionales cuando evaluamos signos clínicos, entre otros. Manteniendo el mismo esquema, el procedimiento de los 9 pasos se puede aplicar a cualquier individuo aparentemente sano o enfermo, bajo cualquier situación clínica simple o compleja. Además, de la manera en que ha sido diseñada la metodología, le permitirá al nutricionista/nutriólogo integrar toda la información obtenida. 

 

El procedimiento de los 9 pasos te permite saber cuándo iniciar el tratamiento, cómo hacerlo, con qué iniciarlo, cómo monitorizar la progresión y cuándo decir que, nutricionalmente, el paciente está de alta. Cada uno de los pasos, brinda información que permite dar respuesta oportuna a cada una de las preguntas planteadas. El paso 6: bioquímica nutricional nos dará el fundamento objetivo para saber cuándo iniciar el tratamiento nutricional, así como, también regular el aporte de los nutrientes que administraremos, incluso la forma estructural que deberán tener. Por ejemplo, valores altos de urea y creatinina podrían conducir a una restricción de proteína, valores bajos de creatinina, incremento de la proteína, niveles altos de bilirrubina directa restricción de grasa, niveles reducidos de HDL incremento de la proporción de grasa poliinsaturada, niveles altos de glicemia, implican reducción del aporte de glucosa o la inclusión de maltodextrina, y así sucesivamente. Los cambios en estos valores también nos permitirán decidir cómo hacer las progresiones. El resto de los pasos, nos señalan uno por uno cuáles serán los objetivos que deberemos alcanzar para decir que el paciente se encuentra nutricionalmente recuperado. Por ejemplo, si se detectan signos clínicos de deficiencias, deberán ser corregidas; si se detecta que la forma de consumir un fármaco está generando deficiencia de un nutriente habrá que aplicar las estrategias necesarias para palear esa situación; si la dieta es inadecuada, deberá ser corregida; si el paciente, no tiene actividad física, se deberá buscar que la incremente; si el crecimiento y/o la composición corporal fueran inadecuados, se deberá buscar que el crecimiento no se detenga y que la composición corporal se ajuste a valores normales, entre otras cosas. La corrección de todos estos elementos determina el alta nutricional del paciente.

 

La primera vez que escribí sobre este tema, llevaba dos años enseñando en la universidad; la respuesta de los colegas no fue siquiera entusiasta. Unos años después, cuando escribí mi primer libro: Fundamentos de la Nutrioterapia Moderna en el año 2007 y dediqué prácticamente medio libro a sostener y argumentar la necesidad implementar un protocolo estandarizado de evaluación nutricional que fuera más allá de aplicar una que otra medida antropométrica o centrarse en los resultados del IMC, la propuesta tampoco atrajo la atención. Unos años después firmamos un convenio de cooperación interinstitucional con el Hospital Daniel A. Carrión del Callao y gracias a ello pudimos conducir el internado clínico y validar la factibilidad de implementar estas estrategias durante 7 largos años. Ahora es empleado por cientos y cientos de colegas, ex internos y demás profesionales peruanos formados en el Instituto IIDENUT y lo emplean con éxito. Desde hace unos años, la tarea es continental. 

 

Si quieres saber más sobre nutrición clínica, te invito a estudiar con nosotros. Más información en el siguiente link: 
https://iidenut.org/cursos/diplomado/index.html 
.

 

Si quieres unirte a nuestro grupo en Facebook, ingresa aquí:

https://www.facebook.com/groups/ASOCIADOSIIDENUT/

 

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

Referencias bibliográficas

  1. Comité Internacional para la Elaboración de Consensos y Estandarización en Nutriología (CIENUT). Consenso 3: Procedimiento clínicos para la evaluación nutricional. Lima: Fondo editorial IIDENUT. 2019.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista.

Read More
Mi perfil
Afiliate aquí