Bioquímica nutricional

, ,

Conceptos clave sobre las proteínas

Las proteínas son, sin lugar a duda, el nutriente de la vida. Nada de lo que sucede en el organismo podría sustentarse en modo alguno sin la existencia de las proteínas. Piense en cualquier otro nutriente y trate de recordar cómo es extraído del alimento, la fórmula o el suplemento, cómo luego es distribuido, metabolizado, utilizado o eliminado del cuerpo y en cada uno de esos procesos encontrará una o varias proteínas haciendo posible cada etapa. Es verdad que no se puede vivir solo de proteínas, pero son pocos los nutrientes que están presentes en prácticamente todos los procesos que rigen la vida de las personas. A continuación, describiremos algunos conceptos clave para entenderlas mejor.

 

Que una molécula contenga o este formada por aminoácidos no la convierte necesariamente en una proteína. En la naturaleza existen centenas de compuestos formados por aminoácidos que, a pesar de ello, no alcanzan la categoría de proteína. Arbitrariamente, se ha considerado como proteína a aquellos compuestos integrados por 51 o más aminoácidos. Un ejemplo cotidiano lo constituye la proinsulina, una molécula de 101 aminoácidos que al romperse genera una proteína, la insulina de 51 aminoácidos y un péptido, el péptido C de 50 aminoácidos (1). Ahora bien, ser péptido no significa que este exento de funciones, por el contrario, prácticamente todos los péptidos presentan un comportamiento biológicamente activo que sirve para regular procesos orgánicos importantes como, por ejemplo, la carnitina (una amina cuarternaria) formada por lisina y metionina que es útil para el transporte de ácidos grasos de cadena larga del exterior al interior de las mitocondrias, o la gastrina un péptido de 32 aminoácidos que es a su vez es una hormona que estimula la producción de ácido clorhídrico a nivel gástrico (2).

 

La presencia de nitrógeno en un compuesto tampoco lo convierte en proteína. Es común que muchos de estos compuestos sean considerados erróneamente como proteínas. El ADN, por ejemplo, está compuesto por pares de nucleótidos y cada nucleótido está conformado a la vez por un azúcar, un grupo fosfato y una base (purina o pirimidina) (3); de los elementos citados, solo la base posee nitrógeno, pero su composición ni siquiera se parece a la de un aminoácido. Lo mismo sucede con otros compuestos nitrogenados como el ácido úrico que se obtiene de la metabolización endógena de estas bases nitrogenadas o de la creatinina que es el producto de desecho del metabolismo de la creatinina fosfato, una de las moléculas de reserva energética muscular o de la urea que es sintetizada a partir del residuo de nitrógeno que liberan los aminoácidos cuando son degradados; ninguno de estos compuestos alcanza para ser considerado proteína.

 

La calidad nutricional de la proteína no está circunscrita única y exclusivamente a su valor biológico (VB). El VB de una proteína depende de la cantidad y calidad de aminoácidos esenciales que esta proteína proporcione; una proteína de alto VB debe proporcionar todos los aminoácidos esenciales no solo en número sino en cantidad suficiente para cubrir los requerimientos máximos de un individuo promedio. Bajo esta premisa es posible encontrar proteínas de alto VB tanto de origen animal como de origen vegetal. No obstante, el tema no finaliza aquí porque no solo debe importarnos la presencia de aminoácidos esenciales sino cuántos de estos son realmente absorbidos. La digestibilidad proteica corregida por el score de aminoácidos (PDCAAS) es una medida que nos brinda esta información y ayuda a definir mejor la calidad de una proteína alimentaria. Tomemos como ejemplo a la proteína del grano de soya. Esta proteína tiene un alto VB pero un PDCAAS bajo debido a la presencia de cáscara y otros elementos que puede afectar su digestibilidad a nivel gastrointestinal, por lo tanto, a pesar de tener un VB alto, su PDCAAS solo la ubica en una categoría media en la escala de calidad, a diferencia de la albúmina del huevo que además de presentar un VB alto, también presenta PDCAAS elevado.

 

La proteína alimentaria no solo debe ser extraída también suele ser modificada cuando está destinada a usos especiales. La industria de fórmulas enterales, por ejemplo, debe purificar la proteína del grano de soya (retirar la cáscara y otros elementos) para mejorar su PDCAAS y, por tanto, su utilización biológica; cabe precisar que, aunque este proceso eleva significativamente el PDCAAS de la proteína del grano de soya y la convierte en una proteína de alta calidad nutricional, su aminograma nunca llega a parecerse por completo a aquel de la proteína de la leche de vaca (caseína) o de la clara de huevo (ovoalbúmina)(4). Por otro lado, la caseína presente en las fórmulas enterales también puede ser modificada para adaptarse a las condiciones de digestibilidad gastrointestinal en condiciones clínicas específicas. Cuando la actividad digestiva es plena, las fórmulas enterales contienen caseína en estado polimérico, es decir, prácticamente sin modificación alguna; cuando la actividad digestiva está parcialmente disminuida, las fórmulas enterales ya no contienen caseína íntegra, sino péptidos de caseína, es decir, moléculas más pequeñas que requieren un menor proceso de digestión; cuando la actividad digestiva está ausente, las fórmulas enterales contienen solo aminoácidos que serán absorbidos libremente (5). Otro ejemplo importante de modificaciones físicas a la caseína, lo encontramos en los productos destinados a la alimentación de lactantes. Desde el punto de vista nutricional, la leche humana es el alimento ideal e irremplazable para la alimentación del lactante y tiene una composición diametralmente diferente a aquella de la leche de vaca (tabla 1). La leche de vaca contiene 3 veces más proteína (este aporte elevado puede afectar la función renal del lactante y generar inflamación a nivel intestinal), el doble de caseína (proteína de difícil digestión para el lactante) y 3 a 4 veces menos nitrógeno libre (bajo la forma de nucléotidos esenciales para el neurodesarrollo del lactante). Por esta razón, organismos como el CODEX o la FDA vigilan que los procesos industriales modifiquen la composición de la a leche de vaca para que se asemeje a aquella de la leche humana cuando va a ser empleada en la preparación de productos destinados a lactantes. [Nota. Otras diferencias importantes de la leche de vaca en comparación con la leche humana son: 3 veces menos ácidos grasos poliinsaturados (esenciales para el neurodesarrollo), 10 veces menos oligosacáridos (importantes para la formación de la microbiota intestinal y el neurodesarrollo), de 2 a 4 veces más minerales (incrementa la carga renal de solutos) y de 2 a 3 veces menos vitaminas].

 

 

Tabla 1. Composición proteica de la leche humana en comparación con la leche de vaca.

Composición Leche Humana Leche de vaca
Proteínas (g/dl) 0,89-1,1 3,5
– Caseina (%) 40 82
– Proteínas del suero (%) 60 18
– Nitrógeno no proteico (% de N total) 15-25 6

 

 

La proteína no solo es un componente nutricional importante en las fórmulas destinadas para nutrición enteral, sino que además determina cuál será la estructura molecular de lípidos y de carbohidratos. La estructura molecular de la proteína presente en una formula enteral, sin importar el alimento del que fue extraída será: polimérica, peptídica o elemental. Esta diferencia no debe pasar desapercibida porque determinará el estado en el que encontraremos los demás macronutrientes y además puede determinar al valor final de la osmolaridad del producto. Si la proteína es polimérica, lípidos y carbohidratos podrán estar presentes bajo cualquier grado de complejidad, es decir, en la misma fórmula se pueden encontrar aceites, triglicéridos de cadena media, almidones, oligosacáridos o azúcares.  Si la proteína es péptidica, lípidos y carbohidratos no podrán estar presente bajo la forma polimérica, es decir, en la misma fórmula solo se pueden encontrar como triglicéridos de cadena media, oligosacáridos o azúcares. Finalmente, si la proteína está bajo la forma de aminoácidos, los lípidos y los carbohidratos solo deberán estar presentes en su forma molecular más básica.

 

La proteína no es un nutriente más de la lista, en la práctica todos los demás nutrientes trabajan para ella. Aunque metabólicamente hablando, la glucosa es el combustible principal del cuerpo y está al centro del metabolismo, tanto en personas aparentemente sanas como en enfermas, las proteínas son el nutriente que determina finalmente cuánto lípido y carbohidrato debemos consumir proporcionalmente.  Si consumimos más proteína, por ejemplo, se producirá un incremento en la síntesis de urea de desecho y esto demandará un mayor consumo de agua para poder eliminarla a través de la orina; el metabolismo de la proteína presenta el gasto energético más alto cuando se le compara con el gasto energético de metabolizar lípidos o carbohidratos, por lo cual, más aporte de proteína sin energía para que sea utilizada, es una práctica que garantiza un uso ineficiente de la proteina. En este orden de ideas y con todas sus limitaciones, herramientas como el balance nitrogenado siguen siendo empleadas para entender de alguna manera el dinamismo del nitrógeno en el cuerpo, lamentablemente, existen errores conceptuales que podrían llevarnos a interpretar erróneamente sus resultados. [Nota. Un balance nitrogenado positivo, no necesariamente indica que estemos formando tejido]. La relación entre el aporte de nitrógeno y el aporte de energía no proteica (a partir de lípidos y carbohidratos) es otra relación que, aunque cuestionada, sigue siendo útil y referencial para proporcionar un aporte de energía que permita que la proteína sea empleada racionalmente por el cuerpo.

 

En realidad, el tema “proteínas” es amplio, diverso, complejo y apasionante. La compresión promedio del este, todavía, está lejos de ser adecuada. Existen demasiados errores conceptuales alrededor de las proteínas. La cuantificación numérica y las guías de práctica no siempre tienen la respuesta a todas las preguntas, no obstante, existen y debemos analizarlas en el contexto apropiado. Un concepto final, mientras más entienda la dinámica de las proteínas estoy convencido que entenderá de mejor manera la dinámica de la vida.

 

 

Si quieres saber más sobre este tema, te invito a revisar el temario de nuestro CURSO ESPECIALIZDO DE BIOQUIMICA APLICADA A LA NUTRICIÓN  haciendo click Aquí

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

 

 

 

Referencias Bibliográficas

  1. Weiss M, Steiner DF, Philipson LH. Insulin Biosynthesis, Secretion, Structure, and Structure-Activity Relationships. [Updated 2014 Feb 1]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279029/
  2. Prosapio JG, Sankar P, Jialal I. Physiology, Gastrin. [Updated 2020 Apr 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534822/
  3. National Human Research Instituto. Nucleotide. Visto en https://www.genome.gov/genetics-glossary/Nucleotide
  4. Savino P. Knowledge of Constituent Ingredients in Enteral Nutrition Formulas Can Make a Difference in Patient Response to Enteral Feeding Nutrition in Clinical Practice Volume 33 Number 1. February 2018 90–98
  5. Cámara-Martos F, Iturbide-Casas, M. Enteral Nutrition Formulas: Current Evidence and Nutritional Composition. Nutrients in Beverages. Volume 12: The Science of Beverages. 2019, Pages 467-508.
  6. Ballard, O, Morrow A. Human Milk Composition: Nutrients and Bioactive Factors. Pediatr Clin North Am. 2013 Feb; 60(1): 49–74.

 

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista.

Read More
,

Los ácidos siálicos son un tipo de carbohidrato de la leche humana fundamental para la vida

La ciencia de la nutrición está cargada de conocimiento que crece y crece; esto inevitablemente nos obliga a revisar, de manera permanente, la información disponible. Al referirnos a los carbohidratos, por ejemplo, pensamos con toda razón en compuestos formados por unidades llamadas sacáridos que, a la vez, contienen en su molécula 3, 4, 5 o 6 carbonos que sirven para clasificarlos en triosas, heptosas, pentosas y hexosas, respectivamente. Con esta misma lógica, es comprensible que en nuestras conversaciones profesionales no aparezcan con tanta regularidad nombres como gliceraldehido o hidroxiacetona de la familia de las triosas o ribosa de la familia de las pentosas debido a su pequeña concentración, pero no importancia menor; lo común y recurrente es referirnos a las hexosas más abundantes: fructuosa, glucosa y galactosa. No obstante, existe otro tipo de sacáridos tan importantes como los antes citados, pero al que rara vez nos referimos: los ácidos siálicos, sacáridos conformados por 9 carbonos cuya importancia para la vida es significativamente alta y su concentración es particularmente alta en la membrana del glóbulo de grasa de la leche humana.

Las primeras referencias disponibles relacionadas con la existencia de estos compuestos se encuentran en descripciones de la composición molecular de la saliva y el cerebro. Originariamente, solo se hablaba del ácido siálico como un compuesto único; sin embargo, en la medida que se dispuso de mejores métodos de análisis, se pudo determinar que el ácido siálico no era un compuesto único, sino una familia de compuestos.

 

DEFINICIÓN

Los ácidos siálicos son una familia de monosacáridos de 9 carbonos (la glucosa y la fructuosa son monosacáridos de solo 6 carbonos) que poseen un grupo funcional “ceto” que les proporciona acidez y carga negativa. El ácido N-acetilneuramínico (Neu5Ac) y el ácido N-glicolilneuroamínico (Neu5Gc) son los ácidos siálicos más abundantes en la naturaleza.

Estos monosacáridos son los constituyentes principales de diferentes oligosacáridos (compuestos formados por 3 a 9 sacáridos), glucoproteínas (moléculas formadas por sacáridos y proteínas) y glucolípidos (moléculas formadas por sacáridos y ácidos grasos), especialmente aquellos que se encuentran en las membranas celulares (glucolípidos y glucoproteínas) y en los productos secretados por diversas células como, por ejemplo, las mucinas (glucoproteínas) y los oligosacáridos de la leche.

 

BIOSÍNTESIS

El hígado es el principal productor de ácidos siálicos. Los mamíferos tienen la capacidad de sintetizar Neu5Ac y Neu5Gc; mientras que los seres humanos solo podemos sintetizar Neu5Ac debido a una falla genética que nos dejó sin la enzima clave para la síntesis endógena de Neu5Gc.

Las plantas no sintetizan ácidos siálicos.

 

DESTINO DEL ÁCIDO SIÁLICO DIETARIO

A pesar de todo lo que se ha avanzado en la caracterización de estos compuestos, todavía existen muchos aspectos que no han sido esclarecidos adecuadamente.

La leche humana es la principal fuente natural de ácidos siálicos; la leche de vaca también posee una cantidad interesante de ácidos siálicos, pero significativamente menor a aquella de la leche humana. Otras fuentes alimentarias de ácidos siálicos pueden incluir las vísceras y sobre todo el hígado que es el órgano encargado de la síntesis endógena en los mamíferos. Bajo condiciones normales la aparición de carbohidratos en una carne serviría para calificarla como adulterada; no obstante, aunque los ácidos siálicos son carbohidratos no forman almidón ni glucógeno, por el contrario, son parte de moléculas estructurales complejas.

Estudios llevados a cabo en lactantes demuestran que el ácido siálico, tanto libre como unido a la lactosa, se absorbe muy bien a nivel intestinal y su destino principal es el cerebro. Estudios, llevados a cabo en ratas, muestran que los síntomas de depleción de ácidos siálicos (valorado a través de la medición de su concentración en la saliva) fueron revertidos significativamente a partir de una dieta suplementada con este nutriente; se demostró, además, que las tasas de absorción son mejores durante los primeros años de vida aparentemente porque su destino primordial es el cerebro y que durante la vejez de los animales, la suplementación con ácidos siálicos redujo de manera significativa los deterioros propios de la edad como la xerostomía y algunos patrones cognitivos.

 

ÁCIDOS SIÁLICOS EN DIFERENTES ÁREAS DE LA SALUD

El estudio del papel de los ácidos siálicos en la salud de las personas tiene todavía una frontera muy amplia por explorar. La neurociencia, neurología, fisiología, farmacología, fertilización, medicina pulmonar, gastroenterología, nefrología son áreas donde el avance de la investigación ha sido muy grande, no obstante, también se está avanzando en hepatología, oncología, infectología y otras más.

 

Neurociencia y neurología. El cerebro es el órgano con la más alta concentración de ácido siálico en el cuerpo y forma parte de un conjunto de glucoproteínas sializadas denominadas gangliósidos. La formación de cadenas de ácidos polisiálicos es fundamental para la germinación y plasticidad neuronal. No solo eso, el hecho que las glucoproteínas asociadas a la mielina reconozcan a los gangliósidos también juega un rol importante en la estabilidad de la mielina y en la inhibición del daño neuronal.

La posibilidad de llevar a cabo estudios en lactantes que fallecieron por muerte súbita, una condición cuya causa se desconoce hasta el día de hoy y no involucra la presencia de una patología previa, pudo mostrar una relación importante entre el ácido siálico dietario y su participación en el neurodesarrollo del niño. Estos estudios mostraron concentraciones significativamente altas de este componente en el cerebro de los niños y esta concentración mantenía relación directa con el aporte a partir de la leche de la madre e incluso productos suplementados lo que demuestra la alta incorporación cerebral del ácido siálico dietario.

 

Fisiología. La carga negativa de los ácidos siálicos hace que las membranas celulares donde están presentes repelan a otras membranas con lo cual se evita la asociación de células; por ejemplo, evita que dos glóbulos rojos se unan en la sangre.

 

Farmacología. En esta área se presentan dos problemas: i) Muchos medicamentos son glucoproteinas (anticuerpos, citoquinas y hormonas); cuando no tienen suficiente ácidos siálicos con carga negativa repelente, son metabolizados con rapidez; y, ii) muchos de estos medicamentos son obtenidos a partir de cultivos celulares que se pueden contaminar con Neu5Gc (no lo producimos) y el cuerpo tiene anticuerpos para este tipo de ácido siálico por lo que son destruidos rápidamente.

 

Fertilización y desarrollo. Los ácidos siálicos son importantes para la embriogénesis y aunque no se conoce el mecanismo exacto, la ausencia de estos azúcares puede llevar  a la muerte del embrión.

 

Medicina pulmonar. Los ácidos siálicos son expresados fuertemente a lo largo de todo el epitelio y son responsables de las características reológicas (viscosidad) del moco en las vías aéreas. Estas características no solo permiten la lubricación sino que, además, el moco actúa como red que atrapa sustancias y organismos exógenos.

 

Más allá de todo lo que está pendiente en relación a la investigación en torno a los ácidos siálicos; es claro que cumplen un rol superlativo en el desarrollo del cerebro sobre todo en los primeros años de vida. Aunque no se han establecido recomendaciones sobre su ingesta dietética está claro que su deficiencia puede generar serias alteraciones a nivel orgánico.

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

 

Referencias Bibliográficas

  1. Schauer R. Sialic acids as link to Japanese scientists. Jpn. Acad, Ser. B92 (2016)
  2. Varki A. Sialic acids in human health and disease. Trends Mol. Med. 2008 August; 14(8): 351-360
  3. Schnaar RL. Glycolipid-mediated cell–cell recognition in inflammation and nerve regeneration. Arch. Biochem. Biophys 2004;426:163–172. [PubMed: 15158667]
  4. Pan B, et al. Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp. Neurol 2005;195:208–217. [PubMed: 15953602]
  5. Weigel PH, Yik JH. Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochim. Acta 2002;1572:341–363. [PubMed: 12223279]

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

Read More
,

Confinamiento en niños, neurodesarrollo y DHA

La pandemia por COVID-19 ha generado cambios significativos y, en muchos casos, permanentes en nuestro estilo de vida. Durante los últimos 6 meses, hemos prestado merecida atención y esfuerzos para desarrollar estrategias que, desde el ámbito nutricional, sirvan para atenuar la gravedad de la infección en personas con mayor riesgo de hacer cuadros severos de COVID-19 como por ejemplo individuos con sobrepeso-obesidad o adultos mayores. En la actualidad, no existe comunicación científica disponible que cuestione el confinamiento y la cuarentena rígida que el mundo adoptó desde el mes de marzo y, a pesar del número de muertos y contagios, parece ser que fue una decisión acertada. Sin embargo, en un contexto tan dramático, donde más allá de las dificultades, parece ser que hemos protegido apropiadamente a todos aquellos que debíamos proteger, pero hemos perdido de vista un grupo etario particularmente vulnerable, no por la infección misma, sino por las condiciones de vida de esta “nueva normalidad”.

El cautiverio y el cierre de las escuelas son factores asociados con la cuarentena que tendrán un impacto marcado sobre la salud mental de los niños y aunque todavía es difícil pronosticar la magnitud del mismo, este impacto existirá. Incluso para los más pequeñitos de la casa, la interacción con otros niños en el ámbito escolar, u otro de aprestamiento pre-escolar, estimula su desarrollo neurológico y cognitivo. La alteración de los patrones de sueño, el uso de pantallas en general (celular, tableta, computadora, televisor), el miedo a infectarse o a infectar a los abuelos, el aburrimiento eterno, la frustración, la falta de espacio personal en una casa invadida por el home office y el solo hecho de no interactuar con otros niños de la misma edad son factores a tener en cuenta para entender el impacto sobre la salud mental infantil en esta “nueva normalidad” (1) [Nota. El estudio ABC que sigue a más de 11 mil niños de 9 y 10 años de 21 lugares de los Estados Unidos de Norteamérica ha mostrado como resultados preliminares que los niños que pasan más de 7 horas al día frente a un teléfono, tableta o computadora muestran un envejecimiento prematuro en ciertos sectores clave de su corteza cerebral (2)].  Los niños, dependiendo de la edad, presentan diferentes maneras de mostrar sus preocupaciones y su reacción a situaciones estresantes, como la cuarentena; mientras que, los más pequeños pueden apegarse más a los padres o retroceder en sus comportamientos, los más grandes pueden volverse más ansiosos, enojados y retraídos, comportamientos que a opinión de los padres pueden ser vistos como desafiantes (3).

El desarrollo del comportamiento en los niños involucra relaciones dinámicas entre procesos guiados genéticamente por las estructuras neuronales y su interacción con el medio ambiente. Por mucho tiempo se pensó, que después del desarrollo vertiginoso que se llevaba a cabo en el cerebro durante el primer y segundo año de vida postnatal, el proceso declinaba y terminaba a los 6 años con un cerebro maduro, similar a aquel de los adultos. No obstante, el empleo de neuroimágenes ha permitido demostrar que el cerebro sigue desarrollando de manera significativa hasta la adolescencia. La información actualmente disponible ha permitido romper el dogma que sostenía que la estructura del cerebro permanecía constante durante la infancia y ha demostrado que los cambios en este periodo de vida son, al menos, tan dramáticos (para bien?) como los que enfrentamos durante el final de la vida (4). En este sentido, se ha sugerido que los cambios en la morfología cortical son relevantes para el desarrollo cognitivo y las diferencias en el comportamiento de los niños están fuertemente influenciadas por el curso de su neurodesarrollo. De alguna manera, los cambios en su comportamiento nos podrían estar mostrando señales indirectas de algún grado de alteración en sus estructuras más internas.

Desde el punto de vista nutricional, las membranas cerebrales están compuestas principalmente por los ácidos grasos araquidónico (AA) y docosahexaenoico (DHA). Los estudios en animales muestran que las células cerebrales responden mejor al aporte dietario de DHA que de AA; un aporte dietario incrementado de ácido graso linolénico (ALA) se ve directamente reflejado en la composición de las membranas, mientras que el incremento del aporte de ácido graso linoleico (LA) tiene muy poco impacto sobre las mismas. Por ejemplo, en caso de una deficiencia dietaria de ácidos grasos omega 3, existe una tendencia muy fuerte a reemplazar el DHA por el omega 6 más cercano, mientras que, si faltase omega 6, casi no se aprecian cambios en la composición del cerebro. La incorporación de DHA en los diferentes tejidos parece ser dependiente del contenido de la dieta y solo una pequeña proporción provendría de la conversión endógena de ALA en DHA.

Aunque los mecanismos no están del todo claros, el consumo de DHA podría presentar marcados efectos neuro protectores durante toda la infancia. Un estudio aleatorizado, placebo controlado y doble ciego llevado a cabo en niños saludables de 4 años, suplementados con 400 mg/d de DHA por 4 meses, mostró una fuerte asociación positiva entre los niveles plasmáticos de DHA y los resultados de las pruebas de comprensión de lectura y adquisición de vocabulario (5).

La investigación disponible sugiere que un consumo de entre 120-800 mg por día de DHA+EPA para niños en función de la edad, podría tener un efecto protector sobre el neurodesarrollo. El pescado es, en este contexto, la principal fuente alimentaria de DHA; no obstante, su contenido puede variar significativamente de una especie a otra (tabla 1). Los pescados de color oscuro proporcionan un mayor aporte de DHA por cada cien gramos de pulpa, que aquel de los pescados blancos. Lamentablemente, los pescados no solo proporcionan DHA, también aportan una cantidad importante de proteína. Obtener la recomendación sugerida implicaría un consumo elevado de proteína paralelo a aquel de DHA+EPA, lo cual y sobre todo en niños menores pequeños podría generar desbalances nutricionales importantes.

Dada la coyuntura actual es necesario tomar medidas de prevención para los eventos del presente y del futuro. Los niños han sido los menos atendidos en estos días. El confinamiento ha sido visto por los padres como un premio para los niños y las manifestaciones de estrés de estos últimos como cambios más cercanos a una pataleta que un evento que amerita mayor atención. Las alertas sobre posibles problemas futuros de salud mental tanto en niños como en adultos son cada día mayores y más serias; preocupa particularmente el impacto que tendrá sobre los niños que desarrollaron cuadros de COVID-19 que los llevaron al aislamiento dentro de un hospital o a la pérdida del papá o la mamá. Las medidas preventivas nunca serán innecesarias y aunque el pescado es la fuente alimentaria natural para cubrir estas necesidades adicionales, la suplementación a través de diferentes aceites o alimentos enriquecidos es una alternativa igualmente viable que debería ser puesta en marcha rápidamente.

 

Tabla 1. Composición nutricional de ácidos grasos de algunos de los pescados más consumidos en Perú.

 

Pescados Proteína

(%)

Grasa (g%) Ag. Linoleico (mg) EPA (mg) DHA

(mg)

Bonito (músculo oscuro) 20.30 0.9 ND 261.42 464.11
Caballa 18.10 1.50 ND 103.75 343.01
Cachema 16.44 0.78 38.91 33.70 83.82
Jurel 20.54 0.83 38.63 68.65 212.15
Perico 17.79 0.42 ND 17.20 148.92
Lisa 18.31 1.05 31.05 148.64 158.90

Fuente: Salas A, Aranda D, Castro C, Albrecht M, Solari A, Arpi E. Información nutricional sobre algunas especies comerciales del Mar Peruano. Instituto Tecnológico Pesquero del Perú. Volumen 10. Enero-Diciembre 2012.

 

 

Si quieres saber más sobre este tema, te invito a revisar el temario de nuestro CURSO ESPECIALIZDO DE BIOQUIMICA APLICADA A LA NUTRICIÓN  haciendo click Aquí

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

 

Referencias Bibliográficas

  1. Ghosh R, Dubey M, Chatterjee S, Dubey S. Impact of COVID-19 on children: special focus on the psychosocial aspect. Minerva Pediatrica 2020 June;72(3):226-35. DOI: 10.23736/S0026-4946.20.05887-9.
  2. Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco DV, Garavan H, Orr CA, Wager TD, Banich MT, Speer NK, Sutherland MT, Riedel MC, Dick AS, Bjork JM, Thomas KM, Chaarani B, Mejia MH, Hagler DJ Jr, Daniela Cornejo M, Sicat CS, Harms MP, Dosenbach NUF, Rosenberg M, Earl E, Bartsch H, Watts R, Polimeni JR, Kuperman JM, Fair DA, Dale AM; ABCD Imaging Acquisition Workgroup. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev Cogn Neurosci. 2018 Aug;32:43-54. doi: 10.1016/j.dcn.2018.03.001. Epub 2018 Mar 14. PMID: 29567376; PMCID: PMC5999559
  3. Imran N, Aamer I, Sharif MI, Bodla ZH, Naveed S. Psychological burden of quarantine in children and adolescents: A rapid systematic review and proposed solutions. Pak J Med Sci. 2020 Jul-Aug;36(5):1106-1116. doi: 10.12669/pjms.36.5.3088. PMID: 32704298; PMCID: PMC7372688.
  4. Jernigan TL, Baaré WF, Stiles J, Madsen KS. Postnatal brain development: structural imaging of dynamic neurodevelopmental processes. Prog Brain Res. 2011;189:77-92. doi: 10.1016/B978-0-444-53884-0.00019-1. PMID: 21489384; PMCID: PMC3690327.
  5. González Francisca Echeverría, Báez Rodrigo Valenzuela. IN TIME: IMPORTANCE OF OMEGA 3 IN CHILDREN’S NUTRITION. Rev. paul. pediatr.  [Internet]. 2017 Mar [cited 2020 Oct 06]; 35(1): 3-4. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-05822017000100003&lng=en.  https://doi.org/10.1590/1984-0462/;2017;35;1;00018.
  6. Salas A, Aranda D, Castro C, Albrecht M, Solari A, Arpi E. Información nutricional sobre algunas especies comerciales del Mar Peruano. Instituto Tecnológico Pesquero del Perú. Volumen 10. Enero-Diciembre 2012

 

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista.

Read More
, ,

Menores de un año no deben consumir leche, queso ni yogurt

La leche entera de vaca (LEV) es un alimento tradicional en la canasta básica del poblador peruano. Desde hace más de 20 años, existen amplias descripciones sobre el papel preponderante de la caseína (una de las fracciones proteicas de la LEV) en el desarrollo de micro sangrados a nivel intestinal y su contribución causal al desarrollado de anemia en el recién nacido. A continuación, describiremos las razones.

 

  1. a) La LEV contiene mucha más caseína que la leche humana.

Tanto la leche humana como la LEV están compuestas por dos grupos diferentes de proteínas: proteínas del suero y fracciones de caseína.  La ratio de suero – caseína en la leche humana puede pasar de 9 a 1, es decir, 90% proteínas del suero y solo 10% caseína durante la primera semana de lactancia hasta estabilizarse en una ratio de 6 a 4 a partir de la tercera semana de lactancia; la LEV, por otro lado, presenta un ratio de 2 a 8; lo que significa que solo presenta un 20% de sus proteínas, bajo la forma de proteínas de suero (tabla 1) y el 80% restante es caseína.

 

Tabla 1. Fracciones proteicas de la leche humana en comparación con la de vaca.

Proteína Leche humana (g/dl) Leche entera de vaca (g/dl)
     
Caseínas 40% 80%
Alfa caseína ND 12.6
Beta caseína 2.0 9.3
Kapa caseína 0.8 3.3
     
Proteinas del suero 60% 20%
Alfa lactoalbúmina 2.8 1.2
Beta lactoglobulina 0.0 3.2
Lactoferrina 2.0 0.1
Lisozima 0.4 0.0
Albúmina del suero 0.6 0.4
Inmunoglobulinas 1.0 0.7

Fuente: Modificado de referencia 5

  1. b) LA LEV contiene macromoléculas de caseína mucho más grandes que aquellas de la leche humana

Aunque los pesos moleculares de las tres fracciones más importantes de la LEV (alfa, beta y kappa) son de tamaño mediano 23500 D, 24000 D y 19000 D, respectivamente, estas pueden asociarse y formar micelas que pueden llegar a tener pesos moleculares superiores a los 600 000 D (tabla 2), algo que no sucede en la leche humana. Las proteínas del suero, por otro lado, son proteínas que se encuentran en solución. Algunas de ellas pueden presentar pesos moleculares altos como es el caso de la lactoferrina (94 000 D) o la seroalbúmina (65 000 D), pero no forman macro compuestos como si lo hacen las caseínas. En general, las proteínas del suero presentan pesos moleculares muy bajos como la alfalactoglobulina (14 000 D) (tabla 2).

 

Tabla 2. Pesos moleculares de las diferentes fracciones proteicas de la leche

Proteína Leche humana (g/dl) Leche entera de vaca (g/dl) Peso molecular (peso por molécula)
       
Caseínas    
Alfa caseína ND 12.6 23 500 D
Beta caseína 2.0 9.3 24 000 D
Kapa caseína 0.8 3.3 19 000 D
Proteínas del suero      
Alfa lactoalbúmina 2.8 1.2 14 000 D
Beta lactoglobulina 0.0 3.2 18 000 D
Lactoferrina 2.0 0.1 94 000 D
Lysozima 0.4 0.0
Albúmina del suero 0.6 0.4 65 000 D
Inmunoglobulinas 1.0 0.7 100 000 – 400 000 D

Fuente: Modificado de referencia 7

 

  1. c) El tamaño tan grande de la caseína de la leche presente en la LEV puede provocar micro sangrados a nivel del intestino del lactante

 

En 1992, el Comité de Nutrición de la Academia Americana de Pediatría (AAP-NC) basado en las investigaciones clásicas de Fomon et al, Ziegler et al y otros reconocidos pediatras recomendaron que la LEV no debería ser introducida en la alimentación del niño antes del año de nacimiento. Fommon y Ziegler habían demostrado previamente que el consumo de LEV antes del año producía pérdidas intestinales de sangre hasta un 30% mayores que aquellas fisiológicas de los niños que no recibieron LEV; también se había demostrado y confirmado luego que este evento podía afectar al 46% de los niños alimentados con LEV.

 

  1. d) Los lactantes peruanos son particularmente sensibles a este problema

 

Las reservas neonatales de hierro se consolidan, recién, en las últimas 8 semanas de gestación; aproximadamente entre el 60 y 80% (8,9) de las reservas totales del recién nacido se habrán conseguido en este periodo de tiempo a costa de los almacenes maternos en un proceso denominado biotransferencia. El faltante de hierro se obtiene a partir de la destrucción fisiológica de glóbulos rojos que se producen en las primeras semanas de vida del niño (9).

 

Lamentablemente, en el Perú existe una alta prevalencia de anemia por deficiencia de hierro en mujeres gestantes y se ha demostrado ampliamente que el estado nutricional de hierro del feto y el recién nacido están fuertemente asociados con el estado nutricional del hierro de la madre; es posible inferir que al menos 1 de cada 3 niños nacidos en el Perú, podría padecer de anemia por deficiencia de hierro a causa de la deficiencia previa de su madre.

 

 

Conclusión

 

La sensibilidad intestinal hacia la caseína de la LEV, el yogurt y el queso (los tres alimentos poseen el mismo tipo de proteínas)  va desapareciendo conforme el intestino del niño va madurando, por lo cual, existe consenso en relación a que este alimento debería ser introducido en la alimentación del niño después del primer año de vida e incluso mucho después.

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

 

Referencias Bibliográficas

  1. Ministerio de Salud. Perú: Indicadores de Resultados de los programas presupuestales del Primer Semestre 2018. Encuesta Demográfica y de Salud Familiar (Resultados preliminares al 50% de la muestra).
  2. Ministerio de Salud. Perú: Indicadores de Resultados de los programas presupuestales del Primer Semestre 2017. Encuesta Demográfica y de Salud Familiar (Resultados preliminares al 50% de la muestra).
  3. Milman Nils. Fisiopatología e impacto de la deficiencia de hierro y la anemia en las mujeres gestantes y en los recién nacidos/infantes. Rev. peru. ginecol. obstet.  [Internet]. 2012  [citado  2019  Feb  07] ;  58( 4 ): 293-312. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2304-51322012000400009&lng=es.
  4. Shellhorn C, Valdés V. Manual de Lactancia para Profesionales de la Salud. Comisión de Lactancia MINSAL, UNICEF. Ministerio de Salud, UNICEF, Chile 1995.
  5. Herrera R [Tesis maestria]. Identificación y caracterización de la Beta caseina en la leche y fórmulas lácteas. Universidad Veracruzana. 2004

Angulo a, joaquín; mahecha l, liliana and olivera a, martha. síntesis, composición y modificación de la grasa de la leche bovina: Un nutriente valioso para la salud humana. Rev.MVZ Cordoba [online]. 2009, vol.14, n.3 [cited 2017-10-18], pp.1856-1866. Available from: . ISSN 0122-0268

  1. Alvarado C. Posibilidad de maximizar el contenido de proteína de la leche vía alimentación. Universidad Austral de Chile. Recítela V4 N1. 2004.
  2. Coeto Barona Georgina C., Rosenfeld Mann Fany, Trueba Gómez Rocío, Bouchán Valencia Patricia, Baptista González Héctor A.. Evaluación del estado en la reserva neonatal de hierro y las mutaciones del gen HFE. Bol. Med. Hosp. Infant. Mex.  [revista en la Internet]. 2014  Jun [citado  2019  Feb  08] ;  71( 3 ): 148-153. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-11462014000300004&lng=es.
  3. Pérez B, Lorente A, Gonzalez C, Malillos P, Miranda C, Salcedo E. Nutrición infantil. Guía de Actuación conjunta pediatría Primaria – Especializada, 2011. España.
  4. The use of whole cow´s milk in Infancy. Pediatrics 199;89;1105. Visto en: http://pediatrics.aappublications.org/content/89/6/1105
  5. Fomon Sj, Siegle EE, Nelson SE, et al. Cow milk feeding in infancy: gastrointestinal blood los and iron nutrition estatus. J Pediatr. 1981;98:540-545
  6. Ziegler EE, Fomon SJ, Nelson SE et al. Cow milk feedin in infancy: futher observations on blood loss from the gastrointestinal tract. J Peidatr. 1990;116:11-18.
  7. Guillén S, Vela M. Desventajas de la introducción de la leche de vaca en el primer año de vida. Acta Pediatr Mex 2010;31(3):123-128
  8. Ziegler EE. Consumption of cow’s milk as a cause of iron deficiency in infants and toddlers. Nutr Rev.2011 Nov;69 Suppl 1:S37-42
  9. Cruz R. Fundamentos de la Nutriología Pediátrica. 1ª edición. Lima. 2010.

 

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

 

Read More
, ,

COVID-19, zinc y sistema inmune

Después del hierro, el zinc es el segundo oligoelemento más abundante del mundo: su deficiencia fue identificada recién hace 50 años; es componente estructural y funcional de gran cantidad de proteínas, entre las que se pueden señalar alrededor de 750 factores de transcripción con dedo de zinc (proteína que forma una especie de dedo cuando sus aminoácidos se unen empleando un átomo de zinc); componente catalítico de más de 2 mil enzimas (1); y, por supuesto, elemento crucial en el funcionamiento del sistema inmune.     

 

La prevalencia de deficiencia de zinc puede variar de 4% a 70%, afectando principalmente a países con escasos recursos económicos (curiosamente, las tasas de prevalencia de deficiencia de zinc suelen ser muy parecidas a las tasas de prevalencia de deficiencia de hierro). Esta variabilidad tan alta en las tasas de prevalencia se debe entre otras razones a lo difícil que es identificar las deficiencias leves y moderadas; el zinc no posee un sistema especializado para el almacenamiento orgánico: el 30-45% se encuentra en el núcleo celular, 50% en el citoplasma y otras organelas, 5% en la membrana celular y solo 0.1% se encuentra en el plasma y es responsable de la señalización celular (80% de esta pequeña proporción viaja unida a la albúmina) (2). 

 

La homeostasis del zinc es fundamental para un correcto funcionamiento del sistema inmune, la deficiencia de zinc es tan negativa para la respuesta inmune como el exceso del mineral. El zinc es necesario para el correcto funcionamiento tanto de las células que conforman la inmunidad innata como la específica (tabla 1). Una reciente revisión ha descrito experimentos in vitro en los cuales el zinc ha demostrado tener actividad antiviral al inhibir la SARS-COV ARN polimerasa algo que podría servir para delinear el efecto de la cloroquina; también muestra evidencia indirecta de que el zinc puede disminuir la actividad de la enzima convertidora de angiotensina 2 (ACE2) receptor conocido del virus (3); finalmente, su papel regulador de la inflamación le otorga a este mineral, un papel protector, preventivo y adyuvante en la terapia de COVID-19 a través de la reducción de la inflamación, mejorando el clearance mucoso y previniendo el daño pulmonar producido por el ventilador.

 

Tabla 1. 

Función del zinc en las diferentes células inmunes

 

Célula inmune Función del zinc
Neutrófilos Estimula la carga oxidativa y la netosis
Monocitos/macrófagos Diferenciación de monocitos en macrófagos y estimula la síntesis de citoquinas por los monocitos
Mastocitos Estimula la degranulación
Natural killers Incrementa su número y su síntesis de interferón gamma
Células dendríticas Regula su maduración y función
Linfocitos T helper CD4 (Th)
– Th1 Secreción de interferón gamma e interleucina 2 
– Th2 Promueve la liberación de anticuerpos por los linfocitos B
– Th17 Promueve el reclutamiento de macrófagos
Linfocitos T reguladores (Treg) Reducen la formación de interferón gamma
Linfocitos B Reducción en la producción de inmunoglobulinas

 

En este contexto, la Sociedad Internacional de Inmunonutrición (ISIN) sugiere una suplementación de entre 30 mg – 220 mg por día (4); sin embargo, conviene hacer algunas precisiones: a) la absorción de zinc a partir de los alimentos es mejor cuando se trata de productos de origen animal porque la presencia de fitatos, propios de productos de origen vegetal, reduce significativamente la absorción del mineral, cuya concentración es normalmente baja en los mismos (tabla 2) (5); b) la recomendación de ingesta dietética (DRI) de zinc para un adulto está entre 8 mg – 11mg por día (6) por lo que aquello sugerido por ISIN corresponde a cantidades obtenidas a partir de suplementación; c) el nivel de ingesta superior tolerable (UL) no debería ser superior a 40 mg por día porque cantidades superiores pueden afectar negativamente la absorción de cobre lo cual sugiere que la suplementación no debería ser sostenida por un tiempo indefinido. 

 

Tabla 2

Recomendación de ingesta nutricional

 

 Alimento mg%
Corazón de pollo 6.59
Hígado de cerdo 6.20
Hígado de carnero 4.66
Res carne pulpa 4.32
Hígado de res 4.00
Queso parmesano 2.35
Yema de huevo 2.30
Soja 4.4
Lentejas 4.78
Avena hojuela 3.97

Fuente: Tabla peruana de composición de alimentos.

 

Si quieres saber más sobre este tema, te invito a revisar el temario de nuestro CURSO ESPECIALIZDO DE BIOQUIMICA APLICADA A LA NUTRICIÓN  haciendo click Aquí

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

 

Referencias bibliográficas

  1. Read S, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019;0:1–15; doi: https://doi.org/10.1093/advances/nmz013.
  2. Gammong N, Rink L. Zinc and inmune system. En Mahmoudi M, Rezaei N (eds.), Nutrition and Immunity. © Springer Nature Switzerland AG 2019.  https://doi.org/10.1007/978-3-030-16073-9_1
  3. Skalny A, Rink L, Ajsuvakova O, Aschner M, Gritsenko V, Alekseenko S, Svistunov A. et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). International journal of molecular medicine. April 13, 2020. DOI: 10.3892/ijmm.2020.4575
  4. Harbige L, Calder P, Marcos A, Dardenne M, Perdigón G, Perez-Cano F, Savino W, Slobodianik N, Solano L, Valdes R. ISIN position statement on nutrition, inmunity and COVID-19. International Society for Immunonutrition (ISIN). Board members (March 2020). 
  5. Ministerio de Salud. Centro Nacional de Alimentación y Nutrición. Tabla peruana de composición de alimentos. 2017.
  6. Dietary Reference Intakes (DRI) for Energy, Carbohydrate, Fiber, Fat, Fatty acids, Cholesterol, Protein, and Aminoacids. Food And Nutrition Board. Institute of Medicine of the National Academies. 2005.

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista.

 

Read More
, ,

COVID-19, vitamina C y sistema inmune

En las últimas semanas se ha postulado intensamente el papel coadyuvante que podría tener la infusión endovenosa de vitamina C en la respuesta del organismo frente a la infección por COVID-19. Revisemos brevemente qué dice la evidencia al respecto.

La vitamina C pertenece al grupo de vitaminas hidrosolubles. Sus valores plasmáticos normales fluctúan entre 0.5 – 1.6 mg/dl; valores de 0.19 a 0.40 mg/dl son considerados deficiencia marginal y valores menores a 0.19 mg/dl indican deficiencia establecida. La vitamina C es indispensable para la formación de colágeno y L-carnitina; para la conversión de colesterol en sales biliares; para la absorción del hierro no hem; para decenas de procesos esteroidogénicos a nivel adrenal; para la neutralización de especies reactivas de oxígeno (ROS), por ende, atenúa el daño en el ADN; y, por supuesto, para estimular y modular la respuesta inmunitaria (1).

Desde el punto de vista inmunológico, la vitamina C presenta influencia directa sobre el funcionamiento de monocitos, neutrófilos y linfocitos (incluye a sus tres subtipos linfocitos T, linfocitos B y natural killers). Estas células contienen 50-100 veces más vitamina C que aquella que circula en el plasma (esto implica que la concentración sanguínea de este micronutriente no indica necesariamente el estado de los almacenes corporales).

Los neutrófilos forman parte de la respuesta inmunitaria innata; de presentarse una infección, se dirigen a la zona afectada (quimiocinésis) siguiendo la pista de sustancias químicas liberadas para este fin (quimiotaxis); al llegar pueden liberar trampas (NETs) que atrapan microorganismos (netosis); y, también secretan y contienen diversas sustancias oxidantes (ROS) que los ayudan a destruir y digerir microorganismos. La vitamina C no solo mejora la quimiotaxis, estimula la producción de sustancias oxidantes y las inactiva cuando se producen en cantidad excesiva; contrala la netosis para evitar la necrosis tisular producida por neutrófilos y estimula su apoptosis cuando ya no son necesarios. Los linfocitos, por otro lado, presentan un número mayor de actividades debido a todos sus subtipos. Los linfocitos T, por ejemplo, se subdividen en T helper CD4 (éstos estimulan la activación de Th1 y Th2), T citotóxico CD 8 y T reguladores; cabe resaltar en esta lista el papel de los linfocitos Th1 responsables de la formación de interferón gamma. Los linfocitos B son responsables de la síntesis de inmunoglobulinas (IgA, IgM, IgG). [Nota. La vitamina C no solo estimula la respuesta inmunitaria de todas estas células, además, la detiene y controla cuando es demasiado exagerada] (figura 1).

 

Figura 1. Algunas células inmunitarias citadas en la nota

 

Debido a lo poco que se sabe hasta el momento sobre la fisiopatología de la infección por SARS-COV2 (COVID-19), la mayor parte de los protocolos de investigación se basan en lo aprendido a partir de la infección por SARS-COV en el año 2002. En estos modelos, el virus del SARS presentaba una replicación intensa acompañada de una respuesta retardada de interferón (IFN) (el interferón atrae macrófagos encargados de destruir microorganismos). Esta respuesta retardada producía una extensa inflamación pulmonar que a la larga terminaba atrayendo mayor número de monocitos-macrófagos. Estos macrófagos activados generaban cantidades significativamente altas de lactato que era asimilado por las células epiteliales tipo II del pulmón (encargadas de producir interferón) reduciendo su capacidad de respuesta. La alta producción de citoquinas liberadas, estimulaba la apoptosis temprana de linfocitos T CD4 y T CD8 locales agudizando todavía más la inflamación pulmonar y alimentando “la tormenta de citoquinas” que completa un circuito fisiopatológico que se retroalimenta solo. Se ha propuesto que la vitamina C endovenosa corrige el funcionamiento alterado de los macrófagos; corrige el “efecto Warburg” responsable de la elevada producción de lactato y actúa como un pro-oxidante que atenúa la generación de ROS, generando un estado “inmunosupresivo” positivo para el paciente; nuevamente, debe recordarse que la vitamina C promueve la respuesta inmune pero también la regula cuando es excesiva (2).

El estudio CITRIS-ALI (3), el mayor a la fecha, fue llevado a cabo entre setiembre de 2014 y enero de 2018 con el objetivo de determinar el efecto de la infusión intravenosa de vitamina C sobre los marcadores de falla orgánica, inflamación y daño vascular en pacientes con sepsis y síndrome de distrés respiratorio severo. Los resultados no mostraron diferencias significativas en los niveles plasmáticos de proteína C reactiva y trombomodulina, ni mejoras en la evaluación secuencial de falla orgánica, medida por la escala de SOFA. No obstante, los pacientes tratados con vitamina C mostraron resultados interesantes: 16.5% menos mortalidad; 2.5 días menos de terapia intensiva y 6.7 días menos de internamiento (placebo, 7.8 días).

El uso de vitamina C intravenosa ha mostrado resultados prometedores y desde algunas semanas atrás está siendo incorporado dentro de la terapia contra el COVID-19 en diversos hospitales de China; sin embargo, existe todavía la necesidad de estudiar el efecto de la suplementación de este micronutriente antes, durante y después de la infección para saber a ciencia cierta cuál es su papel en el fortalecimiento del sistema inmune, la reducción en la tormenta de citoquinas o el fortalecimiento de los mecanismos antivirales (4), información que hasta el día de hoy se encuentra en el terreno de la hipótesis. En este sentido, en febrero pasado se inició en Wuhan, China un estudio clínico cuyo objetivo es investigar la infusión de vitamina C para el tratamiento de la neumonía severa por COVID-19; el estudio incluye 140 pacientes que recibirán 24 g/d de vitamina C por 7 días. Se valorarán los requerimientos de ventilación mecánica, medicación vasopresora, puntuación de falla orgánica, tiempo de permanencia en unidad de cuidados intensivos y la mortalidad en un periodo de 28 días; el estudio concluirá en setiembre (5).

Finalmente, y de modo preventivo, la Sociedad Internacional de Inmunonutrición ha propuesto una suplementación de entre 200 – 2000 mg por día de vitamina C con el objetivo de fortalecer el sistema inmunológico (6). Debe recordarse que consumos diarios de vitamina C de alrededor de 100 mg tienen un impacto positivo sobre los almacenes leucocitarios de la vitamina y que la mayoría de estudios sobre este aspecto han empleado cantidades suplementarias entre 250 mg – 1000 mg por día.

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

Si quieres saber más sobre este tema, te invito a revisar el temario de nuestro CURSO ESPECIALIZDO DE BIOQUIMICA APLICADA A LA NUTRICIÓN  haciendo click Aquí

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

 

 

Referencias bibliográficas

  1. Jafari D, Esmaeilzadeh A, Mohammadi-Kordkhayli M, Rezaei N. Vitamin C and the Immune System. En Mahmoudi M, Rezaei N (eds.), Nutrition and Immunity. © Springer Nature Switzerland AG 2019. https://doi.org/10.1007/978-3-030-16073-9_1
  2. Erol A. High-dose intravenous vitamin C treatment for COVID-19 (a mechanistic approach). Pre-print. Feb 2020. https://www.researchgate.net/publication/339511104

3.     Fowler II A, Truwit J Duncan R, Morris P, DeWilde C, Priday A, Fisher B, et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure. JAMA October 1, 2019 Volume 322, Number 13

4.     Boretti A, Banik BK, Intravenous Vitamin C for reduction of cytokines storm in Acute Respiratory Distress Syndrome, PharmaNutrition (2020), doi: https://doi.org/10.1016/j.phanu.2020.100190

  1. Carr A. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit Care. 2020; 24: 133. Published online 2020 Apr 7. doi: 1186/s13054-020-02851-4
  2. Comité Internacional para la Elaboración de Consensos y Estandarización en Nutriología (CIENUT). Posición de expertos sobre el manejo nutricional del coronavirus COVID-19. Lima: Fondo editorial IIDENUT. 2020

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista.

Read More
, ,

COVID-19, Vitamina D, sistema inmune y aislamiento social

La D es una vitamina liposoluble que se presenta bajo dos formas cuya actividad biológica es equivalente: D2, sintetizada en plantas y hongos a partir de ergosterol; y, D3 producida en la piel a partir de 7 deshidrocolesterol (7DHC); en esta nota nos enfocaremos solo en la D3.

La vitamina D se forma en la piel a partir de su precursor, el 7DHC; este proceso es no enzimático, requiere la presencia de rayos ultravioleta B (UVB) y está dividido en dos fases (fase 1: de 7DHC a pro vitamina D; fase 2: de pro vitamina D a vitamina D) [Premisa A. El tono de la piel, mientras más oscura peor, y el tiempo de exposición al sol afectan negativamente la síntesis de vitamina D; mientras que, se ha demostrado recientemente que el uso de pantallas solares no lo afecta (1)]. Una vez formada, la vitamina D es transportada hacia el hígado por la proteína ligadora de vitamina D (vitamin D binding protein, DBP). En el hígado sufre su primera hidroxilación por efecto de la enzima CYP2R1 y es convertida en 25 (OH)D, la principal forma circulante. Cuando, por ejemplo, los niveles de calcio bajan, la vitamina D sufre su segunda hidroxilación y pasa de 25(OH)D a 1,25 (OH)2D por acción de la enzima CYP27B1; esta es la forma hormonal y activa de la vitamina; este proceso se lleva a cabo de manera importante en las células renales, pero también en otras células como las inmunes [Premisa B. Las células inmunes son capaces de producir 1,25 (OH)2D para cubrir sus propias necesidades].

De modo clásico, las funciones de la vitamina D han estado asociadas con la homeostasis del calcio y la salud ósea. Sin embargo, y sin saberlo, también ha sido empleada para el tratamiento de problemas respiratorios como la tuberculosis: cuando no existían antibióticos, el tratamiento incluía la exposición del paciente a la luz solar y la prescripción de aceite de hígado de bacalao rico en vitamina D (2). Estudios epidemiológicos han mostrado que la deficiencia de vitamina D incrementa el riesgo de infección del tracto respiratorio e influenza; esta deficiencia también es prevalente en el paciente con HIV (3). En el 2017, se publicó un metaanálisis que incluyó 25 estudios y 11300 participantes de 0 a 99 años. El objetivo de la investigación era medir el efecto de la suplementación de vitamina D sobre el riesgo de infecciones agudas del tracto respiratorio y los factores que modificaban este efecto. Se encontró que la suplementación de vitamina D reducía el riesgo de infecciones respiratorias agudas en todos los pacientes; aquellos que recibieron suplementación diaria y presentaban un nivel plasmático basal < 25 nmol/l de 25(OH)D fueron más beneficiados que aquellos que presentaban un nivel plasmático ≥25 nmol/l (4).

Como fue citado líneas arriba, la enzima CYP27B1 se encuentra presente principalmente en las células renales; sin embargo, también la podemos encontrar en macrófagos activados, células dendríticas, linfocitos T, B y células pulmonares; en todos estos casos, la concentración y actividad de esta enzima no está regulada por las señales del metabolismo de calcio. Los efectos de la vitamina D están mediados por la unión del 1,25 (OH)2D con el receptor de vitamina D (vitamina D receptor, VDR) que se encuentra en la membrana nuclear de la célula. Cuando se produce esta unión, el VDR activo se une a una isoforma del receptor X de retinoides (retinoides X receptor, RXR) para formar la macromolécula VDR-RXR que estimula una serie de procesos de transcripción que llevan a la activación de la célula y la modulación de la respuesta inmune. Las células del epitelio pulmonar presentan niveles basales elevados de CYP27B1, lo cual favorece la activación de grandes cantidades de vitamina D para su uso exclusivo. Cuando estas células son tratadas con vitamina D incrementan la síntesis del co-receptor de los receptores toll-like (TLR, proteínas que permiten identificar moléculas presentes en agentes infecciosos) y catelicidinas (péptidos antimicrobianos). Además, el tratamiento de las células del epitelio pulmonar con vitamina D también ha generado una disminución significativa de la inducción que ejercen los virus sobre los genes pro-inflamatorios desencadenando una infección menos agresiva.

El avance de la pandemia por COVID-19 nos está obligando, y probablemente lo seguirá haciendo por un tiempo más, a permanecer en aislamiento y confinamiento dentro de nuestras casas; este evento podría afectar nuestra cuota de sol y, por tanto, nuestra cuota de vitamina D [Premisa C. Con menos sol, habrá menos formación de 25(OH)D y en consecuencia menos 1,25(OH)2D]. La principal fuente de vitamina D para lo humanos es aquella producida endógenamente gracias a la exposición al sol (ideal, entre las 9:00 horas y las 12:00 horas y las 15:00 horas y 17:00 horas por un periodo promedio de 20 minutos). La vitamina D producida por este medio, puede permanecer en sangre hasta dos veces más tiempo que aquella ingerida a partir de suplemento nutricional. No obstante, la producción ideal de vitamina D está afectada por decenas de factores entre los que podemos citar estación del año, latitud, tiempo de exposición, color de la piel entre otros tantos (5); por ejemplo, una exposición al sol con muy pocas partes expuestas del cuerpo tiene menos impacto sobre la producción endógena de vitamina D que la exposición en camisa y pantalón de manga corta. En el contexto de la pandemia por COVID-19, la Sociedad Internacional de Inmunonutrición ha propuesto un aporte de entre 400 UI – 2000 UI de vitamina D como medida encaminada a fortalecer el sistema inmune (6). Los alimentos, en general, no son la mejor manera de obtener vitamina D suficiente. Los pescados grasos, como el atún y la caballa pueden contener cantidades importantes que, sin embargo, podrían ser insuficiente sin una adecuada exposición al sol. Los suplementos comercialmente disponibles pueden contener entre 200 UI – 400 UI por dosis.

La pandemia por COVID-19 está creando y creará necesidades diferentes en un mundo diferente. Probablemente de la peor manera posible, pero nuestra labor en el ámbito de la nutrición debería alcanzar una presencia superlativa en las decisiones futuras de la población.

 

Si quieres saber más sobre el manejo nutricional del COVID19, por favor, ingresa aquí: https://www.cienut.org/comite_internacional/declaraciones/paginas/declaracion_2.php

 

Si quieres saber más sobre el manejo nutricional de pacientes, bajo diferentes situaciones clínicas, por favor, ingresa al siguiente link:  https://www.iidenut.org/cursos/diplomado/index.html

 

 

Por Robinson Cruz

*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una decena de libros y cientos de comunicaciones relacionadas, entre otras actividades.

 

 

Referencias bibliográficas

  1. Bikle, D., Christakos, S. New aspects of vitamin D metabolism and action — addressing the skin as source and target. Nat Rev Endocrinol 16, 234–252 (2020). https://doi.org/10.1038/s41574-019-0312-5
  2. Aranow C. Vitamin D and the Immune System. Journal of Investigative Medicine & Volume 59, Number 6, August 2011
  3. Martineau A, Jolliffe D, Hooper R, Greenberg L, Aloia J, Bergman P, Dubnov-Raz G, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017;356:i6583
  4. Beard J, et al. Vitamin D and the anti-viral state. Journal of Clinical Virology 50 (2011) 194–200
  5. Nair R, Maseeh A. Vitamin D: The “sunshine” vitamin. J Pharmacol Pharmacother. 2012 Apr-Jun; 3(2): 118–126.
  6. Harbige L, Calder P, Marcos A, Dardenne M, Perdigón G, Perez-Cano F, Savino W, Slobodianik N, Solano L, Valdes R. ISIN position stament on nutrition, inmunity and COVID-19. International Society for Immunonutrition (ISIN). Board members (March 2020).

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista.

 

Read More

El ciclo de Krebs en el ejercicio clínico de la nutriología

El ciclo de Krebs es la imagen icónica del metabolismo humano; más tarde o más temprano, tanto la glucosa, los ácidos grasos como los aminoácidos ingresan a este circuito para ser convertidos en energía o en compuestos intermediarios necesarios para decenas de reacciones posteriores y de importancia vital para el ser humano. El ciclo de Krebs es, también, la parada obligatoria en el proceso formativo de los nutricionistas/nutriólogos (dependiendo de la denominación del país) alrededor del mundo; todos nosotros en algún momento de nuestra formación académica debemos someternos a la tarea de entender, recordar y procesar la información desprendida de este complejo proceso integrado por sustrato, enzimas y reacciones. El objetivo de la presente nota es resaltar algunos hechos concretos que pueden hacer menos pesada esta tarea. En lo posible, trata de ver la imagen adjunta de modo paralelo a la explicación de cada párrafo.

La imagen circular con la que estudiamos el ciclo de Krebs es útil para explicar que las reacciones se dan de manera continua y cíclica, es decir, empiezan con la unión de acetil coa (2 carbonos) con el oxalacetato (4 carbonos) hasta formar citrato (6 carbonos) y terminan, después de varias reacciones, en oxalacetato para volver a iniciar el ciclo. Esto no significa que los compuestos posteriores (cis-aconitato, isocitrato, oxalsuccinato, cetoglutarato, succinil, succionato, fumarato, malato) se encuentren atados de modo inseparable, todo lo contrario, son producto y sustrato de reacciones diferentes que se dan de modo paralelo y en todo momento [Nota. La enzima responsable de la conversión del piruvato en acetil coa es dependiente de tiamina]. 

El ciclo de Krebs está formado por reacciones que se dan de manera independiente pero relacionadas entre sí: el producto de una reacción previa es fundamental para que se lleve a cabo la reacción posterior. Por ejemplo, el oxalacetato que se requiere para unirse al acetil coa se forma a partir de malato; sin embargo, en situaciones de ayuno la concentración de oxalacetato baja significativamente y de modo inversamente proporcional a la subida del acetil coa por lo que es necesario que el piruvato deje de ser convertido en acetil coa para ser convertido en oxalacetato; de ese modo se garantiza la continuidad del ciclo. En este mismo sentido y para citar otro ejemplo,  la formación de alfa cetoglutarato a partir de oxalsuccinato es importante para que el alfa cetoglutarato puede ser convertido en succinil coa; en condiciones de ayuno, la administración de aminoácidos como la glutamina tiene importancia clínica porque puede originar grandes cantidades de alfa cetoglutarato con el objetivo de sostener el ciclo y en un momento determinado contribuir a la formación de nueva glucosa en los órganos gluconeogénicos como el hígado o el riñón [Nota. La glutamina pierde nitrógeno y es convertida en glutamato; el glutamato pierde nitrógeno y es convertido en alfacetoglutarato que ingresa al ciclo]

La función básica del ciclo de Krebs no es producir ATP o GTP, el ciclo de Krebs se encarga de liberar grandes cantidades de electrones y protones que serán transportados hacia la cadena respiratoria a través del NAD (se forma a partir de niacina) o el FAD (se forma a partir de riboflavina). Cabe mencionar que el producto de desecho que se forma en Krebs es el CO2 y son los sacáridos los que mayor cantidad de CO2 liberan.

En la cadena respiratoria (un complejo de 4 megaproteinas ubicado en la membrana interna de la mitocondria) los electrones son transportados de una proteína a otra a través de enzimas denominadas citocromo (dependientes de hierro) hasta su destino final que es la formación de agua, no sin antes liberar cantidades variables de especies reactivas de oxígeno (ROS) o también llamados radicales libres [Nota. Mientras mayor sea la ingesta de energía de una persona, mayor será la necesidad de niacina y riboflavina, así como también, será mayor la producción de radicales libres]. Paralelamente, los protones fluyen a través del espacio intermembrana hasta activar a la enzima ATP sintetasa que tomará una molécula de ADP para formar ATP. 

Existen millones de argumentos que nos diferencian de los demás profesionales de la salud. En la nota, tan solo hemos querido puntualizar y resaltar el papel de 5 nutrientes básicos: tiamina, riboflavina, niacina, hierro y glutamina, sin embargo, todavía se podría decir millones de cosas más. El conocimiento con criterio y bien encaminado es la única forma en que esa diferenciación sea verdadera y perdure. 


Si quieres saber más sobre bioquímica aplicada a la nutrición, te invito a  revisar el temario de nuestro curso especializado haciendo click en  
Información del curso

 

Por Robinson Cruz
*Robinson Cruz es Director General del Instituto IIDENUT. Cuenta con 20 años de experiencia como nutricionista clínico y especialista en Bioquímica aplicada a la Nutrición. Es investigador y docente invitado en los programas de nutrición de pre y posgrado de decenas de universidades en 20 países de Iberoamérica. Más de medio millón de profesionales siguen sus publicaciones en diversos medios digitales. En este tiempo ha formado miles de profesionales de la nutrición, ha publicado casi una docena de libros y cientos de comunicaciones relacionadas, entre otras actividades. https://orcid.org/0000-0002-8056-1822

 

 

DECLARACIÓN DE PRINCIPIOS

En IIDENUT rechazamos rotundamente aquellas prácticas asociadas con el uso inapropiado de la información con fines comerciales. Nuestros estándares éticos nos impiden aceptar, difundir o parcializarnos subjetivamente con producto o práctica alguna que vaya en contra o distorsione la labor científica del nutricionista

 

Read More
Abrir chat
1
Bienvenidos a IIDENUT
¿En qué puedo ayudarte?
AFÍLIATE